Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels

Abstract

We have engineered the Fc region of a human immunoglobulin G (IgG) to generate a mutated antibody that modulates the concentrations of endogenous IgGs in vivo. This has been achieved by targeting the activity of the Fc receptor, FcRn, which serves through its IgG salvage function to maintain and regulate IgG concentrations in the body. We show that an IgG whose Fc region was engineered to bind with higher affinity and reduced pH dependence to FcRn potently inhibits FcRn-IgG interactions and induces a rapid decrease of IgG levels in mice. Such FcRn blockers (or 'Abdegs,' for antibodies that enhance IgG degradation) may have uses in reducing IgG levels in antibody-mediated diseases and in inducing the rapid clearance of IgG-toxin or IgG-drug complexes.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: The MST-HN Abdeg binds to human FcRn with increased affinity and reduced pH dependence.
Figure 2: The MST-HN Abdeg accumulates to higher levels in FcRn-GFP–expressing endothelial cells relative to wild-type human or mouse IgG1.
Figure 3: Inhibition of recycling of mouse IgG1 from HMEC-1 cells transfected with mouse FcRn-GFP.
Figure 4: Enhancement of clearance of injected wild-type human IgG1 by MST-HN Abdeg.
Figure 5: Enhancement of clearance of endogenous IgGs by MST-HN Abdeg.

References

  1. 1

    Souriau, C. & Hudson, P.J. Recombinant antibodies for cancer diagnosis and therapy. Expert Opin. Biol. Ther. 3, 305–318 (2003).

    CAS  Article  Google Scholar 

  2. 2

    Weiner, L.M. & Carter, P. Tunable antibodies. Nat. Biotechnol. 23, 556–557 (2005).

    CAS  Article  Google Scholar 

  3. 3

    Lewis, E.J. & Schwartz, M.M. Pathology of lupus nephritis. Lupus 14, 31–38 (2005).

    CAS  Article  Google Scholar 

  4. 4

    Dickinson, B.L. et al. Bidirectional FcRn-dependent IgG transport in a polarized human intestinal epithelial cell line. J. Clin. Invest. 104, 903–911 (1999).

    CAS  Article  Google Scholar 

  5. 5

    McCarthy, K.M., Yoong, Y. & Simister, N.E. Bidirectional transcytosis of IgG by the rat neonatal Fc receptor expressed in a rat kidney cell line: a system to study protein transport across epithelia. J. Cell Sci. 113, 1277–1285 (2000).

    CAS  PubMed  Google Scholar 

  6. 6

    Antohe, F., Radulescu, L., Gafencu, A., Ghetie, V. & Simionescu, M. Expression of functionally active FcRn and the differentiated bidirectional transport of IgG in human placental endothelial cells. Hum. Immunol. 62, 93–105 (2001).

    CAS  Article  Google Scholar 

  7. 7

    Kobayashi, N. et al. FcRn-mediated transcytosis of immunoglobulin G in human renal proximal tubular epithelial cells. Am. J. Physiol. Renal Physiol. 282, F358–F365 (2002).

    Article  Google Scholar 

  8. 8

    Spiekermann, G.M. et al. Receptor-mediated immunoglobulin G transport across mucosal barriers in adult life: functional expression of FcRn in the mammalian lung. J. Exp. Med. 196, 303–310 (2002).

    CAS  Article  Google Scholar 

  9. 9

    Claypool, S.M. et al. Bidirectional transepithelial IgG transport by a strongly polarized basolateral membrane Fc-γ receptor. Mol. Biol. Cell 15, 1746–1759 (2004).

    CAS  Article  Google Scholar 

  10. 10

    Ober, R.J., Martinez, C., Vaccaro, C., Zhou, J. & Ward, E.S. Visualizing the site and dynamics of IgG salvage by the MHC class I-related receptor, FcRn. J. Immunol. 172, 2021–2029 (2004).

    CAS  Article  Google Scholar 

  11. 11

    Ober, R.J., Martinez, C., Lai, X., Zhou, J. & Ward, E.S. Exocytosis of IgG as mediated by the receptor, FcRn: an analysis at the single-molecule level. Proc. Natl. Acad. Sci. USA 101, 11076–11081 (2004).

    CAS  Article  Google Scholar 

  12. 12

    Rodewald, R. & Kraehenbuhl, J.P. Receptor-mediated transport of IgG. J. Cell Biol. 99, 159s–164s (1984).

    CAS  Article  Google Scholar 

  13. 13

    Simister, N.E. & Rees, A.R. Isolation and characterization of an Fc receptor from neonatal rat small intestine. Eur. J. Immunol. 15, 733–738 (1985).

    CAS  Article  Google Scholar 

  14. 14

    Ghetie, V. et al. Abnormally short serum half-lives of IgG in beta 2-microglobulin-deficient mice. Eur. J. Immunol. 26, 690–696 (1996).

    CAS  Article  Google Scholar 

  15. 15

    Junghans, R.P. & Anderson, C.L. The protection receptor for IgG catabolism is the beta2-microglobulin- containing neonatal intestinal transport receptor. Proc. Natl. Acad. Sci. USA 93, 5512–5516 (1996).

    CAS  Article  Google Scholar 

  16. 16

    Israel, E.J., Wilsker, D.F., Hayes, K.C., Schoenfeld, D. & Simister, N.E. Increased clearance of IgG in mice that lack beta 2-microglobulin: possible protective role of FcRn. Immunology 89, 573–578 (1996).

    CAS  Article  Google Scholar 

  17. 17

    Raghavan, M., Bonagura, V.R., Morrison, S.L. & Bjorkman, P.J. Analysis of the pH dependence of the neonatal Fc receptor/immunoglobulin G interaction using antibody and receptor variants. Biochemistry 34, 14649–14657 (1995).

    CAS  Article  Google Scholar 

  18. 18

    Popov, S. et al. The stoichiometry and affinity of the interaction of murine Fc fragments with the MHC class I-related receptor, FcRn. Mol. Immunol. 33, 521–530 (1996).

    CAS  Article  Google Scholar 

  19. 19

    Medesan, C., Matesoi, D., Radu, C., Ghetie, V. & Ward, E.S. Delineation of the amino acid residues involved in transcytosis and catabolism of mouse IgG1. J. Immunol. 158, 2211–2217 (1997).

    CAS  PubMed  Google Scholar 

  20. 20

    Kim, J.K. et al. Mapping the site on human IgG for binding of the MHC class I-related receptor, FcRn. Eur. J. Immunol. 29, 2819–2825 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Martin, W.L., West, A.P.J., Gan, L. & Bjorkman, P.J. Crystal structure at 2.8 Å of an FcRn/heterodimeric Fc complex: mechanism of pH dependent binding. Mol. Cell 7, 867–877 (2001).

    CAS  Article  Google Scholar 

  22. 22

    Shields, R.L. et al. High resolution mapping of the binding site on human IgG1 for Fc gamma RI, Fc gamma RII, Fc gamma RIII, and FcRn and design of IgG1 variants with improved binding to the Fc gamma R. J. Biol. Chem. 276, 6591–6604 (2001).

    CAS  Article  Google Scholar 

  23. 23

    Kabat, E.A., Wu, T.T., Perry, H.M., Gottesman, K.S. & Foeller, C. (eds.) Sequences of Proteins of Immunological Interest (US Dept. of Health and Human Services, Bethesda, MD, 1991).

    Google Scholar 

  24. 24

    Ghetie, V. et al. Increasing the serum persistence of an IgG fragment by random mutagenesis. Nat. Biotechnol. 15, 637–640 (1997).

    CAS  Article  Google Scholar 

  25. 25

    Hinton, P.R. et al. Engineered human IgG antibodies with longer serum half-lives in primates. J. Biol. Chem. 279, 6213–6216 (2004).

    CAS  Article  Google Scholar 

  26. 26

    Dall'Acqua, W. et al. Increasing the affinity of a human IgG1 to the neonatal Fc receptor: biological consequences. J. Immunol. 169, 5171–5180 (2002).

    Article  Google Scholar 

  27. 27

    Zhou, J., Johnson, J.E., Ghetie, V., Ober, R.J. & Ward, E.S. Generation of mutated variants of the human form of the MHC class I-related receptor, FcRn, with increased affinity for mouse immunoglobulin G. J. Mol. Biol. 332, 901–913 (2003).

    CAS  Article  Google Scholar 

  28. 28

    Yoshida, M. et al. Human neonatal Fc receptor mediates transport of IgG into luminal secretions for delivery of antigens to mucosal dendritic cells. Immunity 20, 769–783 (2004).

    CAS  Article  Google Scholar 

  29. 29

    Berryman, M. & Rodewald, R. Beta 2-microglobulin co-distributes with the heavy chain of the intestinal IgG-Fc receptor throughout the transepithelial transport pathway of the neonatal rat. J. Cell Sci. 108, 2347–2360 (1995).

    CAS  PubMed  Google Scholar 

  30. 30

    Semple, J.W. Immune pathophysiology of autoimmune thrombocytopenic purpura. Blood Rev. 16, 9–12 (2002).

    CAS  Article  Google Scholar 

  31. 31

    Israel, E.J., Patel, V.K., Taylor, S.F., Marshak-Rothstein, A. & Simister, N.E. Requirement for a beta 2-microglobulin-associated Fc receptor for acquisition of maternal IgG by fetal and neonatal mice. J. Immunol. 154, 6246–6251 (1995).

    CAS  PubMed  Google Scholar 

  32. 32

    Firan, M. et al. The MHC class I related receptor, FcRn, plays an essential role in the maternofetal transfer of gammaglobulin in humans. Int. Immunol. 13, 993–1002 (2001).

    CAS  Article  Google Scholar 

  33. 33

    Takai, T. Fc receptors and their role in immune regulation and autoimmunity. J. Clin. Immunol. 25, 1–18 (2005).

    CAS  Article  Google Scholar 

  34. 34

    Bleeker, W.K., Teeling, J.L. & Hack, C.E. Accelerated autoantibody clearance by intravenous immunoglobulin therapy: studies in experimental models to determine the magnitude and time course of the effect. Blood 98, 3136–3142 (2001).

    CAS  Article  Google Scholar 

  35. 35

    Samuelsson, A., Towers, T.L. & Ravetch, J.V. Anti-inflammatory activity of IVIG mediated through the inhibitory Fc receptor. Science 291, 484–486 (2001).

    CAS  Article  Google Scholar 

  36. 36

    Mouthon, L. et al. Mechanisms of action of intravenous immune globulin in immune-mediated diseases. Clin. Exp. Immunol. (suppl. 1) 104, 3–9 (1996).

    CAS  Article  Google Scholar 

  37. 37

    Yu, Z. & Lennon, V.A. Mechanism of intravenous immune globulin therapy in antibody-mediated autoimmune diseases. N. Engl. J. Med. 340, 227–228 (1999).

    CAS  Article  Google Scholar 

  38. 38

    Akilesh, S. et al. The MHC class I-like Fc receptor promotes humorally mediated autoimmune disease. J. Clin. Invest. 113, 1328–1333 (2004).

    CAS  PubMed  PubMed Central  Google Scholar 

  39. 39

    Ober, R.J., Radu, C.G., Ghetie, V. & Ward, E.S. Differences in promiscuity for antibody-FcRn interactions across species: implications for therapeutic antibodies. Int. Immunol. 13, 1551–1559 (2001).

    CAS  Article  Google Scholar 

  40. 40

    Zhou, J., Mateos, F., Ober, R.J. & Ward, E.S. Conferring the binding properties of the mouse MHC class I-related receptor, FcRn, onto the human ortholog by sequential rounds of site-directed mutagenesis. J. Mol. Biol. 345, 1071–1081 (2005).

    CAS  Article  Google Scholar 

  41. 41

    Foote, J. & Winter, G. Antibody framework residues affecting the conformation of the hypervariable loops. J. Mol. Biol. 224, 487–499 (1992).

    CAS  Article  Google Scholar 

  42. 42

    Horton, R.M., Hunt, H.D., Ho, S.N., Pullen, J.K. & Pease, L.R. Engineering hybrid genes without the use of restriction enzymes: gene splicing by overlap extension. Gene 77, 61–68 (1989).

    CAS  Article  Google Scholar 

  43. 43

    O'Connell, K.A. & Edidin, M. A mouse lymphoid endothelial cell line immortalized by simian virus 40 binds lymphocytes and retains functional characteristics of normal endothelial cells. J. Immunol. 144, 521–525 (1990).

    CAS  PubMed  Google Scholar 

  44. 44

    Brewer, C.B. Cytomegalovirus plasmid vectors for permanent lines of polarized epithelial cells. Methods Cell Biol. 43 Pt A, 233–245 (1994).

    CAS  Article  Google Scholar 

  45. 45

    Kim, J.K., Tsen, M.F., Ghetie, V. & Ward, E.S. Identifying amino acid residues that influence plasma clearance of murine IgG1 fragments by site-directed mutagenesis. Eur. J. Immunol. 24, 542–548 (1994).

    CAS  Article  Google Scholar 

  46. 46

    Amit, A.G., Mariuzza, R.A., Phillips, S.E. & Poljak, R.J. Three-dimensional structure of an antigen-antibody complex at 2.8 Å resolution. Science 233, 747–753 (1986).

    CAS  Article  Google Scholar 

  47. 47

    Schuck, P., Radu, C.G. & Ward, E.S. Sedimentation equilibrium analysis of recombinant mouse FcRn with murine IgG1. Mol. Immunol. 36, 1117–1125 (1999).

    CAS  Article  Google Scholar 

  48. 48

    Martin, W.L. & Bjorkman, P.J. Characterization of the 2:1 complex between the class I MHC-related Fc receptor and its Fc ligand in solution. Biochemistry 38, 12639–12647 (1999).

    CAS  Article  Google Scholar 

  49. 49

    Deisenhofer, J. Crystallographic refinement and atomic models of a human Fc fragment and its complex with fragment B of protein A from Staphylococcus aureus at 2.9- and 2.8-Å resolution. Biochemistry 20, 2361–2370 (1981).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We are grateful to Fernando Mateos, Jerry Chao and Rafael Guevara for excellent technical assistance. We also thank Steven Gibbons and Sripad Ram for assistance with preparation of the figures. This study was supported by grants from the National Institutes of Health R01 AI 39167, RO1 AI 55556 (E.S.W.) and R01 AI 50747 (R.J.O).

Author information

Affiliations

Authors

Corresponding author

Correspondence to E Sally Ward.

Ethics declarations

Competing interests

The University of Texas Southwestern Medical Center has filed a patent application describing the technology in this paper.

Supplementary information

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Vaccaro, C., Zhou, J., Ober, R. et al. Engineering the Fc region of immunoglobulin G to modulate in vivo antibody levels. Nat Biotechnol 23, 1283–1288 (2005). https://doi.org/10.1038/nbt1143

Download citation

Further reading

Search

Quick links

Sign up for the Nature Briefing newsletter for a daily update on COVID-19 science.
Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing