Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Gene targeting using zinc finger nucleases

Abstract

The ability to achieve site-specific manipulation of the mammalian genome has widespread implications for basic and applied research. Gene targeting is a process in which a DNA molecule introduced into a cell replaces the corresponding chromosomal segment by homologous recombination, and thus presents a precise way to manipulate the genome. In the past, the application of gene targeting to mammalian cells has been limited by its low efficiency. Zinc finger nucleases (ZFNs) show promise in improving the efficiency of gene targeting by introducing DNA double-strand breaks in target genes, which then stimulate the cell's endogenous homologous recombination machinery. Recent results have shown that ZFNs can be used to create targeting frequencies of up to 20% in a human disease-causing gene. Future work will be needed to translate these in vitro findings to in vivo applications and to determine whether zinc finger nucleases create undesired genomic instability.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Double-strand break repair.

Bob Crimi

Figure 2: ZFN homodimer binding to DNA. Shown is a three-finger zinc finger linked to the Fn domain through a flexible peptide linker.
Figure 3: GFP gene-targeting reporter system.

Similar content being viewed by others

References

  1. Hinnen, A., Hicks, J.B. & Fink, G.R. Transformation of yeast. Proc. Natl. Acad. Sci. USA 75, 1929–1933 (1978).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Rothstein, R.J. One-step gene disruption in yeast. Methods Enzymol. 101, 202–211 (1983).

    Article  CAS  PubMed  Google Scholar 

  3. Orr-Weaver, T.L., Szostak, J.W. & Rothstein, R.J. Yeast transformation: a model system for the study of recombination. Proc. Natl. Acad. Sci. USA 78, 6354–6358 (1981).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Capecchi, M. Altering the genome by homologous recombination. Science 244, 1288–1292 (1989).

    Article  CAS  PubMed  Google Scholar 

  5. Bradley, A., Ramirez-Solis, R., Zheng, H., Hasty, P. & Davis, A. Genetic manipulation of the mouse via gene targeting in embryonic stem cells. Ciba Found. Symp. 165, 256–269 (1992).

    CAS  PubMed  Google Scholar 

  6. Mansour, S.L., Thomas, K.R. & Capecchi, M.R. Disruption of the proto-oncogene int-2 in mouse embryo-derived stem cells: a general strategy for targeting mutations to non-selectable genes. Nature 336, 348–352 (1988).

    Article  CAS  PubMed  Google Scholar 

  7. Sedivy, J.M. & Sharp, P.A. Positive genetic selection for gene disruption in mammalian cells by homologous recombination. Proc. Natl. Acad. Sci. USA 86, 227–231 (1989).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Hacein-Bey-Abina, S. et al. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302, 415–419 (2003).

    Article  CAS  PubMed  Google Scholar 

  9. Cavazzana-Calvo, M. et al. Gene therapy of human severe combined immunodeficiency (SCID)-X1 disease. Science 288, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  10. Gaspar, H.B. et al. Gene therapy of X-linked severe combined immunodeficiency by use of a pseudotyped gammaretroviral vector. Lancet 364, 2181–2187 (2004).

    Article  CAS  PubMed  Google Scholar 

  11. Jasin, M. Genetic manipulation of genomes with rare-cutting endonucleases. Trends Genet. 12, 224–228 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Rouet, P., Smih, F. & Jasin, M. Introduction of double-strand breaks into the genome of mouse cells by expression of rare-cutting endonuclease. Mol. Cell. Biol. 14, 8096–8106 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Rouet, P., Smih, F. & Jasin, M. Expression of a site-specific endonuclease stimulates homologous recombination in mammalian cells. Proc. Natl. Acad. Sci. USA 91, 6064–6068 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Smih, F., Rouet, P., Romanienko, P.J. & Jasin, M. Double-strand breaks at the target locus stimulate gene targeting in embryonic stem cells. Nucleic Acids Res. 23, 5012–5019 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Choulika, A., Perrin, A., Dujon, B. & Nicolas, J.-F. Induction of homologous recombination in mammalian chromosomes by using the I-SceI system of Saccaromyces cerevisiae. Mol. Cell. Biol. 15, 1968–1973 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sargent, R.G., Brenneman, M.A. & Wilson, J.H. Repair of site-specific double-strand breaks in a mammalian chromosome by homologous and illegitimate recombination. Mol. Cell. Biol. 17, 267–277 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Donoho, G., Jasin, M. & Berg, P. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells. Mol. Cell. Biol. 18, 4070–4078 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cohen-Tannoudji, M. et al. I-SceI-induced gene replacement at a natural locus in embryonic stem cells. Mol. Cell. Biol. 18, 1444–1448 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Porteus, M.H. & Baltimore, D. Chimeric nucleases stimulate gene targeting in human cells. Science 300, 763 (2003).

    Article  PubMed  Google Scholar 

  20. Kuan, J.Y. & Glazer, P.M. Targeted gene modification using triplex-forming oligonucleotides. Methods Mol. Biol. 262, 173–194 (2004).

    CAS  PubMed  Google Scholar 

  21. Wurtz, N.R. & Dervan, P.B. Sequence specific alkylation of DNA by hairpin pyrrole-imidazole polyamide conjugates. Chem. Biol. 7, 153–161 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Dervan, P.B. & Edelson, B.S. Recognition of the DNA minor groove by pyrrole-imidazole polyamides. Curr. Opin. Struct. Biol. 13, 284–299 (2003).

    Article  CAS  PubMed  Google Scholar 

  23. Kaihatsu, K., Janowski, B.A. & Corey, D.R. Recognition of chromosomal DNA by PNAs. Chem. Biol. 11, 749–758 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Kim, Y.G., Cha, J. & Chandrasegaran, S. Hybrid restriction enzymes: zinc finger fusions to Fok I cleavage domain. Proc. Natl. Acad. Sci. USA 93, 1156–1160 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Chandrasegaran, S. & Smith, J. Chimeric restriction enzymes: what is next? Biol. Chem. 380, 841–848 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Kandavelou, K., Mani, M., Durai, S. & Chandrasegaran, S. in Nucleic Acids and Molecular Biology, vol. 14 (ed. Pingoud, A.M.) 413–434 (Springer-Verlag, Heidelberg, Germany, 2004).

    Google Scholar 

  27. Kim, Y.G. & Chandrasegaran, S. Chimeric restriction endonuclease. Proc. Natl. Acad. Sci. USA 91, 883–887 (1994).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Kim, Y.G., Smith, J., Durgesha, M. & Chandrasegaran, S. Chimeric restriction enzyme: Gal4 fusion to FokI cleavage domain. Biol. Chem. 379, 489–495 (1998).

    Article  CAS  PubMed  Google Scholar 

  29. Smith, J., Berg, J.M. & Chandrasegaran, S. A detailed study of the substrate specificity of a chimeric restriction enzyme. Nucleic Acids Res. 27, 674–681 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Smith, J. et al. Requirements for double-strand cleavage by chimeric restriction enzymes with zinc finger DNA-recognition domains. Nucleic Acids Res. 28, 3361–3369 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Bibikova, M. et al. Stimulation of homologous recombination through targeted cleavage by chimeric nucleases. Mol. Cell. Biol. 21, 289–297 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Pabo, C.O., Peisach, E. & Grant, R.A. Design and selection of novel Cys2His2 zinc finger proteins. Annu. Rev. Biochem. 70, 313–340 (2001).

    Article  CAS  PubMed  Google Scholar 

  33. Beerli, R.R. & Barbas, C.F. III. Engineering polydactyl zinc-finger transcription factors. Nat. Biotechnol. 20, 135–141 (2002).

    Article  CAS  PubMed  Google Scholar 

  34. Isalan, M. & Choo, Y. Engineering nucleic acid-binding proteins by phage display. Methods Mol. Biol. 148, 417–429 (2001).

    CAS  PubMed  Google Scholar 

  35. Bibikova, M., Golic, M., Golic, K.G. & Carroll, D. Targeted chromosomal cleavage and mutagenesis in Drosophila using zinc-finger nucleases. Genetics 161, 1169–1175 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Bibikova, M., Beumer, K., Trautman, J.K. & Carroll, D. Enhancing gene targeting with designed zinc finger nucleases. Science 300, 764 (2003).

    Article  CAS  PubMed  Google Scholar 

  37. Lloyd, A., Plaisier, C.L., Carroll, D. & Drews, G.N. Targeted mutagenesis using zinc-finger nucleases in Arabidopsis. Proc. Natl. Acad. Sci. USA 102, 2232–2237 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Wilson, J.H. Pointing fingers at the limiting step in gene targeting. Nat. Biotechnol. 21, 759–760 (2003).

    Article  CAS  PubMed  Google Scholar 

  39. Porteus, M.H. in Abstract 709 presented at the Annual Meeting of the American Society of Gene Therapy, Minneapolis, Minnesota, June, 2004.

  40. Urnov, F.D. et al. Highly efficient endogenous human gene correction using designed zinc-finger nucleases. Nature 435, 646–651 (2005).

    Article  CAS  PubMed  Google Scholar 

  41. Notarangelo, L.D. et al. Of genes and phenotypes: the immunological and molecular spectrum of combined immune deficiency. Defects of the gamma(c)-JAK3 signaling pathway as a model. Immunol. Rev. 178, 39–48 (2000).

    Article  CAS  PubMed  Google Scholar 

  42. Jamieson, A.C., Miller, J.C. & Pabo, C.O. Drug discovery with engineered zinc-finger proteins. Nat. Rev. Drug Discov. 2, 361–368 (2003).

    Article  CAS  PubMed  Google Scholar 

  43. Bitinaite, J., Wah, D.A., Aggarwal, A.K. & Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc. Natl. Acad. Sci. USA 95, 10570–10575 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Richardson, C. & Jasin, M. Frequent chromosomal translocations induced by DNA double-strand breaks. Nature 405, 697–700 (2000).

    Article  CAS  PubMed  Google Scholar 

  45. Elliott, B. & Jasin, M. Double-strand breaks and translocations in cancer. Cell. Mol. Life Sci. 59, 373–385 (2002).

    Article  CAS  PubMed  Google Scholar 

  46. Tan, S. et al. Zinc-finger protein-targeted gene regulation: genomewide single-gene specificity. Proc. Natl. Acad. Sci. USA 100, 11997–12002 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Jantz, D., Amann, B.T., Gatto, G.J. Jr. & Berg, J.M. The design of functional DNA-binding proteins based on zinc finger domains. Chem. Rev. 104, 789–799 (2004).

    Article  CAS  PubMed  Google Scholar 

  48. van Gent, D.C., Hoeijmakers, J.H. & Kanaar, R. Chromosomal stability and the DNA double-stranded break connection. Nat. Rev. Genet. 2, 196–206 (2001).

    Article  CAS  PubMed  Google Scholar 

  49. Jasin, M. Chromosome breaks and genomic instability. Cancer Invest. 18, 78–86 (2000).

    Article  CAS  PubMed  Google Scholar 

  50. Paques, F. & Haber, J.E. Multiple pathways of recombination induced by double-strand breaks in Saccharomyces cerevisiae. Microbiol. Mol. Biol. Rev. 63, 349–404 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. West, S.C. et al. Double-strand break repair in human cells. Cold Spring Harb. Symp. Quant. Biol. 65, 315–321 (2000).

    Article  CAS  PubMed  Google Scholar 

  52. McCormack, W.T., Tjoelker, L.W. & Thompson, C.B. Avian B-cell development: generation of an immunoglobulin repertoire by gene conversion. Annu. Rev. Immunol. 9, 219–241 (1991).

    Article  CAS  PubMed  Google Scholar 

  53. Diakun, G.P., Fairall, L. & Klug, A. EXAFS study of the zinc-binding sites in the protein transcription factor IIIA. Nature 324, 698–699 (1986).

    Article  CAS  PubMed  Google Scholar 

  54. Pavletich, N.P. & Pabo, C.O. Zinc finger-DNA recognition: crystal structure of a Zif268-DNA complex at 2.1 A. Science 252, 809–817 (1991).

    Article  CAS  PubMed  Google Scholar 

  55. Wolfe, S.A., Nekludova, L. & Pabo, C.O. DNA recognition by Cys2His2 zinc finger proteins. Annu. Rev. Biophys. Biomol. Struct. 29, 183–212 (2000).

    Article  CAS  PubMed  Google Scholar 

  56. Segal, D.J. & Barbas, C.F. 3rd Custom DNA-binding proteins come of age: polydactyl zinc-finger proteins. Curr. Opin. Biotechnol. 12, 632–637 (2001).

    Article  CAS  PubMed  Google Scholar 

  57. Segal, D.J. et al. Evaluation of a modular strategy for the construction of novel polydactyl zinc finger DNA-binding proteins. Biochemistry 42, 2137–2148 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Liu, Q., Xia, Z., Zhong, X. & Case, C.C. Validated zinc finger protein designs for all 16 GNN DNA triplet targets. J. Biol. Chem. 277, 3850–3856 (2002).

    Article  CAS  PubMed  Google Scholar 

  59. Segal, D.J., Dreier, B., Beerli, R.R. & Barbas, C.F. III. Toward controlling gene expression at will: selection and design of zinc finger domains recognizing each of the 5′-GNN-3′ DNA target sequences. Proc. Natl. Acad. Sci. USA 96, 2758–2763 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Sera, T. & Uranga, C. Rational design of artificial zinc-finger proteins using a nondegenerate recognition code table. Biochemistry 41, 7074–7081 (2002).

    Article  CAS  PubMed  Google Scholar 

  61. Kim, J.S. & Pabo, C.O. Getting a handhold on DNA: design of poly-zinc finger proteins with femtomolar dissociation constants. Proc. Natl. Acad. Sci. USA 95, 2812–2817 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  62. Liu, Q., Segal, D.J., Ghiara, J.B. & Barbas, C.F. III. Design of polydactyl zinc-finger proteins for unique addressing within complex genomes. Proc. Natl. Acad. Sci. USA 94, 5525–5530 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Moore, M., Klug, A. & Choo, Y. Improved DNA binding specificity from polyzinc finger peptides by using strings of two-finger units. Proc. Natl. Acad. Sci. USA 98, 1437–1441 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Chevalier, B.S. & Stoddard, B.L. Homing endonucleases: structural and functional insight into the catalysts of intron/intein mobility. Nucleic Acids Res. 29, 3757–3774 (2001).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  65. Gimble, F.S. Invasion of a multitude of genetic niches by mobile endonuclease genes. FEMS Microbiol. Lett. 185, 99–107 (2000).

    Article  CAS  PubMed  Google Scholar 

  66. Belfort, M. & Roberts, R.J. Homing endonucleases: keeping the house in order. Nucleic Acids Res. 25, 3379–3388 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Chevalier, B.S. et al. Design, activity, and structure of a highly specific artificial endonuclease. Mol. Cell 10, 895–905 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Epinat, J.C. et al. A novel engineered meganuclease induces homologous recombination in yeast and mammalian cells. Nucleic Acids Res. 31, 2952–2962 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Sussman, D. et al. Isolation and characterization of new homing endonuclease specificities at individual target site positions. J. Mol. Biol. 342, 31–41 (2004).

    Article  CAS  PubMed  Google Scholar 

  70. Gimble, F.S., Moure, C.M. & Posey, K.L. Assessing the plasticity of DNA target site recognition of the PI-SceI homing endonuclease using a bacterial two-hybrid selection system. J. Mol. Biol. 334, 993–1008 (2003).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We thank Scott Cameron, Jim Amatruda, Brian Cauff, Shondra Pruett, Patrick Connelly, Michael Holmes and Philip Gregory for reading the manuscript and for their helpful comments. The work in the Porteus lab is supported by the Burroughs-Wellcome Fund, a K08 award from the National Heart and Blood Institute, and UT Southwestern Medical Center. Work in the Carroll lab is supported by research grants from the US Public Health Service.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthew H Porteus.

Ethics declarations

Competing interests

D.C. is an inventor on US and international patent applications that describe the ZFN-based gene-targeting technology.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Porteus, M., Carroll, D. Gene targeting using zinc finger nucleases. Nat Biotechnol 23, 967–973 (2005). https://doi.org/10.1038/nbt1125

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1125

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing