Review Article | Published:

Regenerating the heart



Cell-based cardiac repair offers the promise of rebuilding the injured heart from its component parts. Work began with committed cells such as skeletal myoblasts, but recently the field has expanded to explore an array of cell types, including bone marrow cells, endothelial progenitors, mesenchymal stem cells, resident cardiac stem cells, and both mouse and human embryonic stem cells. A related strategy for cardiac repair involves cell mobilization with factors such as cytokines. Translation of cell-based approaches to the clinic has progressed rapidly, and clinical trials using autologous skeletal myoblasts and bone marrow cells are under way. Many challenges remain before the vision of healing an infarct by muscle regeneration can be realized. Future research is likely to focus on improving our ability to guide the differentiation of stem cells, control their survival and proliferation, identify factors that mediate their homing and modulate the heart's innate inflammatory and fibrotic responses.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Pasumarthi, K.B. & Field, L.J. Cardiomyocyte cell cycle regulation. Circ. Res. 90, 1044–1054 (2002).

  2. 2

    von Harsdorf, R., Poole-Wilson, P.A. & Dietz, R. Regenerative capacity of the myocardium: implications for treatment of heart failure. Lancet 363, 1306–1313 (2004).

  3. 3

    Field, L.J. Modulation of the cardiomyocyte cell cycle in genetically altered animals. Ann. NY Acad. Sci. 1015, 160–170 (2004).

  4. 4

    Marelli, D., Desrosiers, C., el-Alfy, M., Kao, R.L. & Chiu, R.C. Cell transplantation for myocardial repair: an experimental approach. Cell Transplant. 1, 383–390 (1992).

  5. 5

    Chiu, R.C., Zibaitis, A. & Kao, R.L. Cellular cardiomyoplasty: Myocardial regeneration with satellite cell implantation. Ann. Thorac. Surg. 60, 12–18 (1995).

  6. 6

    Koh, G.Y., Klug, M.G., Soonpaa, M.H. & Field, L.J. Differentiation and long-term survival of C2C12 myoblast grafts in heart. J. Clin. Invest. 92, 1548–1554 (1993).

  7. 7

    Taylor, D.A. et al. Regenerating functional myocardium: improved performance after skeletal myoblast transplantation. Nat. Med. 4, 929–933 (1998).

  8. 8

    Reinecke, H., Poppa, V. & Murry, C.E. Skeletal muscle stem cells do not transdifferentiate into cardiomyocytes after cardiac grafting. J. Mol. Cell Cardiol. 34, 241–249 (2002).

  9. 9

    Reinecke, H., Minami, E., Poppa, V. & Murry, C.E. Evidence for fusion between cardiac and skeletal muscle cells. Circ. Res. 94, e56–60 (2004).

  10. 10

    Reinecke, H., MacDonald, G.H., Hauschka, S.D. & Murry, C.E. Electromechanical coupling between skeletal and cardiac muscle. Implications for infarct repair. J. Cell Biol. 149, 731–740 (2000).

  11. 11

    Rubart, M., Soonpaa, M.H., Nakajima, H. & Field, L.J. Spontaneous and evoked intracellular calcium transients in donor-derived myocytes following intracardiac myoblast transplantation. J. Clin. Invest. 114, 775–783 (2004).

  12. 12

    Leobon, B. et al. Myoblasts transplanted into rat infarcted myocardium are functionally isolated from their host. Proc. Natl. Acad. Sci. USA 100, 7808–7811 (2003).

  13. 13

    Menasche, P. Skeletal myoblast transplantation for cardiac repair. Expert Rev. Cardiovasc. Ther. 2, 21–28 (2004).

  14. 14

    Jain, M. et al. Cell therapy attenuates deleterious ventricular remodeling and improves cardiac performance after myocardial infarction. Circulation 103, 1920–1927 (2001).

  15. 15

    Menasche, P. et al. Autologous skeletal myoblast transplantation for severe postinfarction left ventricular dysfunction. J. Am. Coll. Cardiol. 41, 1078–1083 (2003).

  16. 16

    Murry, C.E., Field, L.J. & Menasche, P. Cell-based cardiac repair: Reflections at the 10-year point. Circulation (in press).

  17. 17

    Hocht-Zeisberg, E. et al. Cellular repopulation of myocardial infarction in patients with sex-mismatched heart transplantation. Eur. Heart J. 25, 749–758 (2004).

  18. 18

    Deb, A. et al. Bone marrow-derived cardiomyocytes are present in adult human heart: a study of gender-mismatched bone marrow transplantation patients. Circulation 107, 1247–1249 (2003).

  19. 19

    Quaini, F. et al. Chimerism of the transplanted heart. N. Engl. J. Med. 346, 5–15 (2002).

  20. 20

    Glaser, R., Lu, M.M., Narula, N. & Epstein, J.A. Smooth muscle cells, but not myocytes, of host origin in transplanted human hearts. Circulation 106, 17–19 (2002).

  21. 21

    Caplice, N.M. et al. Smooth muscle cells in human coronary atherosclerosis can originate from cells administered at marrow transplantation. Proc. Natl. Acad. Sci. USA 100, 4754–4759 (2003).

  22. 22

    Laflamme, M.A., Myerson, D., Saffitz, J.E. & Murry, C.E. Evidence for cardiomyocyte repopulation by extracardiac progenitors in transplanted human hearts. Circ. Res. 90, 634–640 (2002).

  23. 23

    Muller, P. et al. Cardiomyocytes of noncardiac origin in myocardial biopsies of human transplanted hearts. Circulation 106, 31–35 (2002).

  24. 24

    Ferrari, G. et al. Muscle regeneration by bone marrow-derived myogenic progenitors. Science 279, 1528–1530 (1998); erratum: 281, 973 (1998).

  25. 25

    Bittner, R.E. et al. Recruitment of bone-marrow-derived cells by skeletal and cardiac muscle in adult dystrophic mdx mice. Anat. Embryol. (Berl) 199, 391–396 (1999).

  26. 26

    Jackson, K.A. et al. Regeneration of ischemic cardiac muscle and vascular endothelium by adult stem cells. J. Clin. Invest. 107, 1395–1402 (2001).

  27. 27

    Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

  28. 28

    Orlic, D. et al. Bone marrow cells regenerate infarcted myocardium. Nature 410, 701–705 (2001).

  29. 29

    Murry, C.E. et al. Haematopoietic stem cells do not transdifferentiate into cardiac myocytes in myocardial infarcts. Nature 428, 664–668 (2004).

  30. 30

    Balsam, L.B. et al. Haematopoietic stem cells adopt mature haematopoietic fates in ischaemic myocardium. Nature 428, 668–673 (2004).

  31. 31

    Nygren, J.M. et al. Bone marrow-derived hematopoietic cells generate cardiomyocytes at a low frequency through cell fusion, but not transdifferentiation. Nat. Med. 10, 494–501 (2004).

  32. 32

    Lapidos, K.A. et al. Transplanted hematopoietic stem cells demonstrate impaired sarcoglycan expression after engraftment into cardiac and skeletal muscle. J. Clin. Invest. 114, 1577–1585 (2004).

  33. 33

    Kajstura, J. et al. Bone marrow cells differentiate in cardiac cell lineages after infarction independently of cell fusion. Circ. Res. 96, 127–137 (2005).

  34. 34

    Yoon, Y.S. et al. Clonally expanded novel multipotent stem cells from human bone marrow regenerate myocardium after myocardial infarction. J. Clin. Invest. 115, 326–338 (2005).

  35. 35

    Dimmeler, S., Zeiher, A.M. & Schneider, M.D. Unchain my heart: the scientific foundations of cardiac repair. J. Clin. Invest. 115, 572–583 (2005).

  36. 36

    Assmus, B. et al. Transplantation of progenitor cells and regeneration enhancement in acute myocardial infarction (TOPCARE-AMI). Circulation 106, 3009–3017 (2002).

  37. 37

    Wollert, K.C. et al. Intracoronary autologous bone-marrow cell transfer after myocardial infarction: the BOOST randomised controlled clinical trial. Lancet 364, 141–148 (2004).

  38. 38

    Chen, S.L. et al. Effect on left ventricular function of intracoronary transplantation of autologous bone marrow mesenchymal stem cell in patients with acute myocardial infarction. Am. J. Cardiol. 94, 92–95 (2004).

  39. 39

    Asahara, T. et al. Isolation of putative progenitor endothelial cells for angiogenesis. Science 275, 964–967 (1997).

  40. 40

    Aicher, A., Zeiher, A.M. & Dimmeler, S. Mobilizing endothelial progenitor cells. Hypertension 45, 321–325 (2005).

  41. 41

    Askari, A.T. et al. Effect of stromal-cell-derived factor 1 on stem-cell homing and tissue regeneration in ischaemic cardiomyopathy. Lancet 362, 697–703 (2003).

  42. 42

    Ceradini, D.J. et al. Progenitor cell trafficking is regulated by hypoxic gradients through HIF-1 induction of SDF-1. Nat. Med. 10, 858–864 (2004).

  43. 43

    Crosby, J.R. et al. Endothelial cells of hematopoietic origin make a significant contribution to adult blood vessel formation. Circ. Res. 87, 728–730 (2000).

  44. 44

    Heeschen, C. et al. Profoundly reduced neovascularization capacity of bone marrow mononuclear cells derived from patients with chronic ischemic heart disease. Circulation 109, 1615–1622 (2004).

  45. 45

    Spyridopoulos, I. et al. Statins enhance migratory capacity by upregulation of the telomere repeat-binding factor TRF2 in endothelial progenitor cells. Circulation 110, 3136–3142 (2004).

  46. 46

    Kocher, A.A. et al. Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat. Med. 7, 430–436 (2001).

  47. 47

    Rehman, J., Li, J., Orschell, C.M. & March, K.L. Peripheral blood “endothelial progenitor cells” are derived from monocyte/macrophages and secrete angiogenic growth factors. Circulation 107, 1164–1169 (2003).

  48. 48

    Kalka, C. et al. Transplantation of ex vivo expanded endothelial progenitor cells for therapeutic neovascularization. Proc. Natl. Acad. Sci. USA 97, 3422–3427 (2000).

  49. 49

    Kinnaird, T. et al. Marrow-derived stromal cells express genes encoding a broad spectrum of arteriogenic cytokines and promote in vitro and in vivo arteriogenesis through paracrine mechanisms. Circ. Res. 94, 678–685 (2004).

  50. 50

    Ziegelhoeffer, T. et al. Bone marrow-derived cells do not incorporate into the adult growing vasculature. Circ. Res. 94, 230–238 (2004).

  51. 51

    Arras, M. et al. Monocyte activation in angiogenesis and collateral growth in the rabbit hindlimb. J. Clin. Invest. 101, 40–50 (1998).

  52. 52

    Orlic, D. et al. Mobilized bone marrow cells repair the infarcted heart, improving function and survival. Proc. Natl. Acad. Sci. USA 98, 10344–10349 (2001).

  53. 53

    Sugano, Y. et al. Granulocyte colony-stimulating factor attenuates early ventricular expansion after experimental myocardial infarction. Cardiovasc. Res. 65, 446–456 (2005).

  54. 54

    Iwanaga, K. et al. Effects of G-CSF on cardiac remodeling after acute myocardial infarction in swine. Biochem. Biophys. Res. Commun. 325, 1353–1359 (2004).

  55. 55

    Deten, A. et al. Hematopoietic stem cells do not repair the infarcted mouse heart. Cardiovasc. Res. 65, 52–63 (2005).

  56. 56

    Norol, F. et al. Influence of mobilized stem cells on myocardial infarct repair in a nonhuman primate model. Blood 102, 4361–4368 (2003).

  57. 57

    Orlic, D. et al. Cytokine mobilized CD34+ cells do not benefit rhesus monkeys following induced myocardial infarction. Blood 100, 29A (2002).

  58. 58

    Minatoguchi, S. et al. Acceleration of the healing process and myocardial regeneration may be important as a mechanism of improvement of cardiac function and remodeling by postinfarction granulocyte colony-stimulating factor treatment. Circulation 109, 2572–2580 (2004).

  59. 59

    Harada, M. et al. G-CSF prevents cardiac remodeling after myocardial infarction by activating the Jak-Stat pathway in cardiomyocytes. Nat. Med. 11, 305–311 (2005).

  60. 60

    Kang, H.J. et al. Effects of intracoronary infusion of peripheral blood stem-cells mobilised with granulocyte-colony stimulating factor on left ventricular systolic function and restenosis after coronary stenting in myocardial infarction: the MAGIC cell randomised clinical trial. Lancet 363, 751–756 (2004).

  61. 61

    Kuethe, F. et al. Mobilization of stem cells by granulocyte colony-stimulating factor for the regeneration of myocardial tissue after myocardial infarction. Dtsch. Med. Wochenschr. 129, 424–428 (2004).

  62. 62

    Tocci, A. & Forte, L. Mesenchymal stem cell: use and perspectives. Hematol. J. 4, 92–96 (2003).

  63. 63

    Caplan, A.I. & Bruder, S.P. Mesenchymal stem cells: building blocks for molecular medicine in the 21st century. Trends Mol. Med. 7, 259–264 (2001).

  64. 64

    Pittenger, M.F. et al. Multilineage potential of adult human mesenchymal stem cells. Science 284, 143–147 (1999).

  65. 65

    Pittenger, M.F. & Martin, B.J. Mesenchymal stem cells and their potential as cardiac therapeutics. Circ. Res. 95, 9–20 (2004).

  66. 66

    Bittira, B., Kuang, J.Q., Al-Khaldi, A., Shum-Tim, D. & Chiu, R.C. In vitro preprogramming of marrow stromal cells for myocardial regeneration. Ann. Thorac. Surg. 74, 1154–1159 (2002).

  67. 67

    Makino, S. et al. Cardiomyocytes can be generated from marrow stromal cells in vitro. J. Clin. Invest 103, 697–705 (1999).

  68. 68

    Ma, J. et al. Time course of myocardial stromal cell-derived factor 1 expression and beneficial effects of intravenously administered bone marrow stem cells in rats with experimental myocardial infarction. Basic Res. Cardiol. 100, 217–223 (2005).

  69. 69

    Shake, J.G. et al. Mesenchymal stem cell implantation in a swine myocardial infarct model: engraftment and functional effects. Ann. Thorac. Surg. 73, 1919–1925 (2002).

  70. 70

    Toma, C., Pittenger, M.F., Cahill, K.S., Byrne, B.J. & Kessler, P.D. Human mesenchymal stem cells differentiate to a cardiomyocyte phenotype in the adult murine heart. Circulation 105, 93–98 (2002).

  71. 71

    Le Blanc, K. & Ringden, O. Immunobiology of human mesenchymal stem cells and future use in hematopoietic stem cell transplantation. Biol. Blood Marrow Transplant. 11, 321–334 (2005).

  72. 72

    Zhao, R.C., Liao, L. & Han, Q. Mechanisms of and perspectives on the mesenchymal stem cell in immunotherapy. J. Lab. Clin. Med. 143, 284–291 (2004).

  73. 73

    El-Badri, N.S., Maheshwari, A. & Sanberg, P.R. Mesenchymal stem cells in autoimmune disease. Stem Cells Dev. 13, 463–472 (2004).

  74. 74

    Bittira, B., Shum-Tim, D., Al-Khaldi, A. & Chiu, R.C. Mobilization and homing of bone marrow stromal cells in myocardial infarction. Eur. J. Cardiothorac. Surg. 24, 393–398 (2003).

  75. 75

    Beltrami, A.P. et al. Adult cardiac stem cells are multipotent and support myocardial regeneration. Cell 114, 763–776 (2003).

  76. 76

    Dawn, B. et al. Cardiac stem cells delivered intravascularly traverse the vessel barrier, regenerate infarcted myocardium, and improve cardiac function. Proc. Natl. Acad. Sci. USA 102, 3766–3771 (2005).

  77. 77

    Oh, H. et al. Cardiac progenitor cells from adult myocardium: homing, differentiation, and fusion after infarction. Proc. Natl. Acad. Sci. USA 100, 12313–12318 (2003).

  78. 78

    Martin, C.M. et al. Persistent expression of the ATP-binding cassette transporter, Abcg2, identifies cardiac SP cells in the developing and adult heart. Dev. Biol. 265, 262–275 (2004).

  79. 79

    Cai, C.L. et al. Isl1 identifies a cardiac progenitor population that proliferates prior to differentiation and contributes a majority of cells to the heart. Dev. Cell 5, 877–889 (2003).

  80. 80

    Laugwitz, K.L. et al. Postnatal isl1+ cardioblasts enter fully differentiated cardiomyocyte lineages. Nature 433, 647–653 (2005).

  81. 81

    Amit, M. et al. Clonally derived human embryonic stem cell lines maintain pluripotency and proliferative potential for prolonged periods of culture. Dev. Biol. 227, 271–278 (2000).

  82. 82

    Rust, E.M., Westfall, M.V., Samuelson, L.C. & Metzger, J.M. Gene transfer into mouse embryonic stem cell-derived cardiac myocytes mediated by recombinant adenovirus. In Vitro Cell Dev. Biol. Anim. 33, 270–276 (1997).

  83. 83

    Westfall, M.V., Pasyk, K.A., Yule, D.I., Samuelson, L.C. & Metzger, J.M. Ultrastructure and cell-cell coupling of cardiac myocytes differentiating in embryonic stem cell cultures. Cell Motil. Cytoskeleton 36, 43–54 (1997).

  84. 84

    Xu, C., Police, S., Rao, N. & Carpenter, M.K. Characterization and enrichment of cardiomyocytes derived from human embryonic stem cells. Circ. Res. 91, 501–508 (2002).

  85. 85

    Mummery, C. et al. Differentiation of human embryonic stem cells to cardiomyocytes: role of coculture with visceral endoderm-like cells. Circulation 107, 2733–2740 (2003).

  86. 86

    Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

  87. 87

    Doetschman, T.C., Eistetter, H., Katz, M., Schmidt, W. & Kemler, R. The in vitro development of blastocyst-derived embryonic stem cell lines: formation of visceral yolk sac, blood islands and myocardium. J. Embryol. Exp. Morphol. 87, 27–45 (1985).

  88. 88

    Fijnvandraat, A.C. et al. Cardiomyocytes derived from embryonic stem cells resemble cardiomyocytes of the embryonic heart tube. Cardiovasc. Res. 58, 399–409 (2003).

  89. 89

    Robbins, J., Gulick, J., Sanchez, A., Howles, P. & Doetschman, T. Mouse embryonic stem cells express the cardiac myosin heavy chain genes during development in vitro. J. Biol. Chem. 265, 11905–11909 (1990).

  90. 90

    Maltsev, V.A., Rohwedel, J., Hescheler, J. & Wobus, A.M. Embryonic stem cells differentiate in vitro into cardiomyocytes representing sinusnodal, atrial and ventricular cell types. Mech. Dev. 44, 41–50 (1993).

  91. 91

    Maltsev, V.A., Wobus, A.M., Rohwedel, J., Bader, M. & Hescheler, J. Cardiomyocytes differentiated in vitro from embryonic stem cells developmentally express cardiac-specific genes and ionic currents. Circ. Res. 75, 233–244 (1994).

  92. 92

    Zhang, Y.M., Hartzell, C., Narlow, M. & Dudley, S.C. Jr. Stem cell-derived cardiomyocytes demonstrate arrhythmic potential. Circulation 106, 1294–1299 (2002).

  93. 93

    Sugi, Y. & Lough, J. Anterior endoderm is a specific effector of terminal cardiac myocyte differentiation of cells from the embryonic heart forming region. Dev. Dyn. 200, 155–162 (1994).

  94. 94

    Schultheiss, T.M., Xydas, S. & Lassar, A.B. Induction of avian cardiac myogenesis by anterior endoderm. Development 121, 4203–4214 (1995).

  95. 95

    Rudy-Reil, D. & Lough, J. Avian precardiac endoderm/mesoderm induces cardiac myocyte differentiation in murine embryonic stem cells. Circ. Res. 94, e107–116 (2004).

  96. 96

    Behfar, A. et al. Stem cell differentiation requires a paracrine pathway in the heart. Faseb J. 16, 1558–1566 (2002).

  97. 97

    Kawai, T. et al. Efficient cardiomyogenic differentiation of embryonic stem cell by fibroblast growth factor 2 and bone morphogenetic protein 2. Circ. J. 68, 691–702 (2004).

  98. 98

    Yuasa, S. et al. Transient inhibition of BMP signaling by Noggin induces cardiomyocyte differentiation of mouse embryonic stem cells. Nat. Biotechnol. 23, 607–611 (2005).

  99. 99

    Dell'Era, P. et al. Fibroblast growth factor receptor-1 is essential for in vitro cardiomyocyte development. Circ. Res. 93, 414–420 (2003).

  100. 100

    Kanno, S. et al. Nitric oxide facilitates cardiomyogenesis in mouse embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12277–12281 (2004).

  101. 101

    Terami, H., Hidaka, K., Katsumata, T., Iio, A. & Morisaki, T. Wnt11 facilitates embryonic stem cell differentiation to Nkx2.5-positive cardiomyocytes. Biochem. Biophys. Res. Commun. 325, 968–975 (2004).

  102. 102

    Wobus, A.M. et al. Retinoic acid accelerates embryonic stem cell-derived cardiac differentiation and enhances development of ventricular cardiomyocytes. J. Mol. Cell Cardiol. 29, 1525–1539 (1997).

  103. 103

    Zandstra, P.W. et al. Scalable production of embryonic stem cell-derived cardiomyocytes. Tissue Eng. 9, 767–778 (2003).

  104. 104

    Takahashi, T. et al. Ascorbic acid enhances differentiation of embryonic stem cells into cardiac myocytes. Circulation 107, 1912–1916 (2003).

  105. 105

    Ventura, C., Zinellu, E., Maninchedda, E. & Maioli, M. Dynorphin B is an agonist of nuclear opioid receptors coupling nuclear protein kinase C activation to the transcription of cardiogenic genes in GTR1 embryonic stem cells. Circ. Res. 92, 623–629 (2003).

  106. 106

    Klug, M.G., Soonpaa, M.H., Koh, G.Y. & Field, L.J. Genetically selected cardiomyocytes from differentiating embronic stem cells form stable intracardiac grafts. J. Clin. Invest. 98, 216–224 (1996).

  107. 107

    Hidaka, K. et al. Chamber-specific differentiation of Nkx2.5-positive cardiac precursor cells from murine embryonic stem cells. Faseb J. 17, 740–742 (2003).

  108. 108

    Kolossov, E. et al. Identification and characterization of embryonic stem cell-derived pacemaker and atrial cardiomyocytes. Faseb J. 19, 577–579 (2005).

  109. 109

    Meyer, N., Jaconi, M., Landopoulou, A., Fort, P. & Puceat, M. A fluorescent reporter gene as a marker for ventricular specification in ES-derived cardiac cells. FEBS Lett. 478, 151–158 (2000).

  110. 110

    Etzion, S. et al. Influence of embryonic cardiomyocyte transplantation on the progression of heart failure in a rat model of extensive myocardial infarction. J. Mol. Cell Cardiol. 33, 1321–1330 (2001).

  111. 111

    Min, J.Y. et al. Transplantation of embryonic stem cells improves cardiac function in postinfarcted rats. J. Appl. Physiol. 92, 288–296 (2002).

  112. 112

    Min, J.Y. et al. Long-term improvement of cardiac function in rats after infarction by transplantation of embryonic stem cells. J. Thorac. Cardiovasc. Surg. 125, 361–369 (2003).

  113. 113

    Hodgson, D.M. et al. Stable benefit of embryonic stem cell therapy in myocardial infarction. Am. J. Physiol. Heart Circ. Physiol. 287, H471–479 (2004).

  114. 114

    Kehat, I. et al. Human embryonic stem cells can differentiate into myocytes with structural and functional properties of cardiomyocytes. J. Clin. Invest. 108, 407–414 (2001).

  115. 115

    He, J.Q., Ma, Y., Lee, Y., Thomson, J.A. & Kamp, T.J. Human embryonic stem cells develop into multiple types of cardiac myocytes: action potential characterization. Circ. Res. 93, 32–39 (2003).

  116. 116

    Ma, Y., He, J., Lee, Y., Kamp, J. & Thomson, J. Functional cardiomyocytes from four human embryonic cell lines. Meeting proceedings of the Keystone Symposium, Keystone, CO. From Stem Cells to Therapy, Abstract # 3038 (abstract) (2003).

  117. 117

    Klug, M.G., Soonpaa, M.H. & Field, L.J. DNA synthesis and multinucleation in embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. 269, H1913–1921 (1995).

  118. 118

    Snir, M. et al. Assessment of the ultrastructural and proliferative properties of human embryonic stem cell-derived cardiomyocytes. Am. J. Physiol. Heart Circ. Physiol. 285, H2355–2363 (2003).

  119. 119

    Laflamme, M.A. et al. Formation of human myocardium in the rat heart from human embryonic stem cells. Am. J. Pathol. (in press).

  120. 120

    Kehat, I. et al. Electromechanical integration of cardiomyocytes derived from human embryonic stem cells. Nat. Biotechnol. 22, 1282–1289 (2004).

  121. 121

    Xue, T. et al. Functional integration of electrically active cardiac derivatives from genetically engineered human embryonic stem cells with quiescent recipient ventricular cardiomyocytes: insights into the development of cell-based pacemakers. Circulation 111, 11–20 (2005).

  122. 122

    Odorico, J.S., Kaufman, D.S. & Thomson, J.A. Multilineage differentiation from human embryonic stem cell lines. Stem Cells 19, 193–204 (2001).

  123. 123

    Zammaretti, P. & Jaconi, M. Cardiac tissue engineering: regeneration of the wounded heart. Curr. Opin. Biotechnol. 15, 430–434 (2004).

  124. 124

    Zimmermann, W.H., Melnychenko, I. & Eschenhagen, T. Engineered heart tissue for regeneration of diseased hearts. Biomaterials 25, 1639–1647 (2004).

  125. 125

    Papadaki, M. et al. Tissue engineering of functional cardiac muscle: molecular, structural, and electrophysiological studies. Am. J. Physiol. Heart Circ. Physiol. 280, H168–178 (2001).

  126. 126

    Radisic, M. et al. Functional assembly of engineered myocardium by electrical stimulation of cardiac myocytes cultured on scaffolds. Proc. Natl. Acad. Sci. USA 101, 18129–18134 (2004).

  127. 127

    Zimmermann, W.H. et al. Cardiac grafting of engineered heart tissue in syngenic rats. Circulation 106, I151–157 (2002).

  128. 128

    Shimizu, T. et al. Fabrication of pulsatile cardiac tissue grafts using a novel 3-dimensional cell sheet manipulation technique and temperature-responsive cell culture surfaces. Circ. Res. 90, e40 (2002).

  129. 129

    Radisic, M. et al. Medium perfusion enables engineering of compact and contractile cardiac tissue. Am. J. Physiol. Heart Circ. Physiol. 286, H507–516 (2004).

  130. 130

    Muller-Ehmsen, J. et al. Survival and development of neonatal rat cardiomyocytes transplanted into adult myocardium. J. Mol. Cell Cardiol. 34, 107–116 (2002).

  131. 131

    Zhang, M. et al. Cardiomyocyte grafting for cardiac repair: graft cell death and anti-death strategies. J. Mol. Cell Cardiol. 33, 907–921 (2001).

  132. 132

    Mangi, A.A. et al. Mesenchymal stem cells modified with Akt prevent remodeling and restore performance of infarcted hearts. Nat. Med. 9, 1195–1201 (2003).

  133. 133

    Neff, T. et al. Pharmacologically regulated in vivo selection in a large animal. Blood 100, 2026–2031 (2002).

  134. 134

    Reinecke, H., Zhang, M., Bartosek, T. & Murry, C.E. Survival, integration, and differentiation of cardiomyocyte grafts: a study in normal and injured rat hearts. Circulation 100, 193–202 (1999).

  135. 135

    Couzin, J. & Kaiser, J. Gene therapy. As Gelsinger case ends, gene therapy suffers another blow. Science 307, 1028 (2005).

Download references

Author information

Competing interests

The authors have had research sponsored by Geron and Guidant.

Correspondence to Charles E Murry.

Rights and permissions

To obtain permission to re-use content from this article visit RightsLink.

About this article

Further reading

Figure 1
Figure 2: Chimerism in a transplanted human heart.
Figure 3
Figure 4: ES cell grafts.