Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

New sources of pancreatic β-cells

Abstract

Two major initiatives are under way to correct the β-cell deficit of diabetes: one would generate β-cells ex vivo that are suitable for transplantation, and the second would stimulate regeneration of β-cells in the pancreas. Studies of ex vivo expansion suggest that β-cells have a potential for dedifferentiation, expansion, and redifferentiation. Work with mouse and human embryonic stem (ES) cells has not yet produced cells with the phenotype of true β-cells, but there has been recent progress in directing ES cells to endoderm. Putative islet stem/progenitor cells have been identified in mouse pancreas, and formation of new β-cells from duct, acinar and liver cells is an active area of investigation. Peptides, including glucagon-like peptide-1/exendin-4 and the combination of epidermal growth factor and gastrin, can stimulate regeneration of β-cells in vivo. Recent progress in the search for new sources of β-cells has opened promising new opportunities and spawned clinical trials.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The pancreas as a source of new β-cells.

Katie Ris

Figure 2: Pharmacological approaches to islet regeneration.

Katie Ris

Similar content being viewed by others

References

  1. Writing team for the Diabetes Control and Complications Trial/Epidemiology of Diabetes Interventions and Complications Research Group. Sustained effect of intensive treatment of type 1 diabetes mellitus on development and progression of diabetic nephropathy: the Epidemiology of Diabetes Interventions and Complications (EDIC) study. JAMA 290, 2159–2167 (2003).

  2. Shapiro, A.M. et al. Islet transplantation in seven patients with type 1 diabetes mellitus using a glucocorticoid-free immunosuppressive regimen. N. Engl. J. Med. 343, 230–238 (2000).

    Article  CAS  PubMed  Google Scholar 

  3. Robertson, R.P. Islet transplantation as a treatment for diabetes—a work in progress. N. Engl. J. Med. 350, 694–705 (2004).

    Article  CAS  PubMed  Google Scholar 

  4. Trucco, M. Regeneration of the pancreatic beta cell. J. Clin. Invest. 115, 5–12 (2005).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Bonner-Weir, S. Perspective: postnatal pancreatic beta cell growth. Endocrinology 141, 1926–1929 (2000).

    Article  CAS  PubMed  Google Scholar 

  6. Tyrberg, B., et al. Stimulated endocrine cell proliferation and differentiation in transplanted human pancreatic islets: effects of the ob gene and compensatory growth of the implantation organ. Diabetes 50, 301–307 (2001).

    Article  CAS  PubMed  Google Scholar 

  7. Zulewski, H. et al. Multipotential nestin-positive stem cells isolated from adult pancreatic islets differentiate ex vivo into pancreatic endocrine, exocrine, and hepatic phenotypes. Diabetes 50, 521–533 (2001).

    Article  CAS  PubMed  Google Scholar 

  8. Linning, K.D. et al. Redox-mediated enrichment of self-renewing adult human pancreatic cells that possess endocrine differentiation potential. Pancreas 29, e64–e76 (2004).

    Article  PubMed  Google Scholar 

  9. Gershengorn, M.C. et al. Epithelial-to-mesenchymal transition generates proliferative human islet precursor cells. Science 306, 2261–2264 (2004).

    Article  CAS  PubMed  Google Scholar 

  10. Lechner, A., Nolan, A.L., Blacken, R.A. & Habener, J.F. Redifferentiation of insulin-secreting cells after in vitro expansion of adult human pancreatic islet tissue. Biochem. Biophys. Res. Commun. 327, 581–588 (2005).

    Article  CAS  PubMed  Google Scholar 

  11. Grunert, S., et al. Diverse cellular and molecular mechanisms contribute to epithelial plasticity and metastasis. Nat. Rev. Mol. Cell Biol. 4, 657–665 (2003).

    Article  PubMed  CAS  Google Scholar 

  12. Ling, Z. & Pipeleers, D.G. Prolonged exposure of human β cells to elevated glucose levels results in sustained cellular activation leading to a loss of glucose regulation. J. Clin. Invest. 98, 2805–2812 (1996).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Hardikar, A.A., et al. Human pancreatic precursor cells secrete FGF2 to stimulate clustering into hormone-expressing islet-like cell aggregates. Proc. Natl. Acad. Sci. USA 100, 7117–7122 (2003).

    Article  CAS  PubMed  Google Scholar 

  14. Soria, B. et al. Insulin-secreting cells derived from embryonic stem cells normalize glycemia in strepotozotocin-induced diabetic mice. Diabetes 49, 157–162 (2000).

    Article  CAS  PubMed  Google Scholar 

  15. Assady, S. et al. Insulin production by human embryonic stem cells. Diabetes 50, 1691–1697 (2001).

    Article  CAS  PubMed  Google Scholar 

  16. Leon-Quinto, T., et al. In vitro directed differentiation of mouse embryonic stem cells into insulin-producing cells. Diabetologia 47, 1442–1451 (2004).

    Article  CAS  PubMed  Google Scholar 

  17. Lumelsky, N. et al. Differentiation of embryonic stem cells to insulin-secreting structures similar to pancreatic islets. Science 292, 1389–1393 (2001).

    Article  CAS  PubMed  Google Scholar 

  18. Hori, Y. et al. Growth inhibitors promote differentiation of insulin-producing tissue from embryonic stem cells. Proc. Natl. Acad. Sci. USA 99, 16105–16110 (2002).

    Article  CAS  PubMed  Google Scholar 

  19. Kahan, B.W. et al. Pancreatic precursors and differentiated islet cell types from murine embryonic stem cells: an in vitro model to study islet differentiation. Diabetes 52, 2016–2024 (2003).

    Article  CAS  PubMed  Google Scholar 

  20. Blyszczuk, P. et al. Embryonic stem cells differentiate into insulin-producing cells without selection of nestin-expressing cells. Int. J. Dev. Biol. 48, 1095–1104 (2004).

    Article  CAS  PubMed  Google Scholar 

  21. Blyszczuk, P. et al. Expression of Pax4 in embryonic stem cells promotes differentiation of nestin-positive progenitor and insulin-producing cells. Proc. Natl. Acad. Sci. USA 100, 998–1003 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Miyazaki, S., Yamato, E. & Miyazaki, J. Regulated expression of pdx-1 promotes in vitro differentiation of insulin-producing cells from embryonic stem cells. Diabetes 53, 1030–1037 (2004).

    Article  CAS  PubMed  Google Scholar 

  23. Segev, H., et al. Differentiation of human embryonic stem cells into insulin-producing clusters. Stem Cells 22, 265–274 (2004).

    Article  CAS  PubMed  Google Scholar 

  24. Rajagopal, J., Anderson, W.J., Kume, S., Martinez, O.I. & Melton, D.A. Insulin staining of ES cell progeny from insulin uptake. Science 299, 363 (2003).

    PubMed  Google Scholar 

  25. Hansson, M. et al. Artifactual insulin release from differentiated embryonic stem cells. Diabetes 53, 2603–2609 (2004).

    Article  CAS  PubMed  Google Scholar 

  26. Sipione, S., et al. Insulin expressing cells from differentiated embryonic stem cells are not beta cells. Diabetologia 47, 499–508 (2004).

    Article  CAS  PubMed  Google Scholar 

  27. Kania, G., et al. The generation of insulin-producing cells from embryonic stem cells–a discussion of controversial findings. Int. J. Dev. Biol. 48, 1061–1064 (2004).

    Article  PubMed  Google Scholar 

  28. Hori, Y., Gu, X., Xie, X. & Kim, S.K. Differentiation of insulin-producing cells from human neural progenitor cells. PLoS Med. 2, e103 (2005).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  29. Schuit, F., et al. Glucose-regulated gene expression maintaining the glucose-responsive state of beta-cells. Diabetes (suppl. 3) 51, S326–S332 (2002).

    Article  CAS  PubMed  Google Scholar 

  30. Halban, P. A., et al. Gene and cell-replacement therapy in the treatment of type 1 diabetes: how high must the standards be set? Diabetes 50, 2181–2191 (2001).

    Article  CAS  PubMed  Google Scholar 

  31. Weir, G.C. Can we make surrogate beta-cells better than the original? Semin. Cell Dev. Biol. 15, 347–357 (2004).

    Article  CAS  PubMed  Google Scholar 

  32. Hanahan, D. Peripheral-antigen-expressing cells in thymic medulla: factors in self-tolerance and autoimmunity. Curr. Opin. Immunol. 10, 656–662 (1998).

    Article  CAS  PubMed  Google Scholar 

  33. Devaskar, S.U. et al. Insulin gene expression and insulin synthesis in mammalian neuronal cells. J. Biol. Chem. 269, 8445–8454 (1994).

    CAS  PubMed  Google Scholar 

  34. Alarcon, C., et al. Synthesis and differentially regulated processing of proinsulin in developing chick pancreas, liver and neuroretina. FEBS Lett. 436, 361–366 (1998).

    Article  CAS  PubMed  Google Scholar 

  35. Asahina, K. et al. Expression of the liver-specific gene Cyp7a1 reveals hepatic differentiation in embryoid bodies derived from mouse embryonic stem cells. Genes Cells 9, 1297–1308 (2004).

    Article  CAS  PubMed  Google Scholar 

  36. Kubo, A. et al. Development of definitive endoderm from embryonic stem cells in culture. Development 131, 1651–1662 (2004).

    Article  CAS  PubMed  Google Scholar 

  37. Ku, H.T. et al. Committing embryonic stem cells to early endocrine pancreas in vitro. Stem Cells 22, 1205–1217 (2004).

    Article  PubMed  Google Scholar 

  38. Dor, Y., Brown, J., Martinez, O.I. & Melton, D.A. Adult pancreatic beta-cells are formed by self-duplication rather than stem-cell differentiation. Nature 429, 41–46 (2004).

    Article  CAS  PubMed  Google Scholar 

  39. Suzuki, A., Nakauchi, H. & Taniguchi, H. Prospective isolation of multipotent pancreatic progenitors using flow-cytometric cell sorting. Diabetes 53, 2143–2152 (2004).

    Article  CAS  PubMed  Google Scholar 

  40. Seaberg, R.M. et al. Clonal identification of multipotent precursors from adult mouse pancreas that generate neural and pancreatic lineages. Nat. Biotechnol. 22, 1115–1124 (2004).

    Article  CAS  PubMed  Google Scholar 

  41. Weir, G.C. & Bonner-Weir, S. Beta-cell precursors–a work in progress. Nat. Biotechnol. 22, 1095–1096 (2004).

    Article  CAS  PubMed  Google Scholar 

  42. Bonner-Weir, S. et al. The pancreatic ductal epithelium serves as a potential pool of progenitor cells. Pediatr. Diabetes 5, 16–22 (2004).

    Article  PubMed  Google Scholar 

  43. Lardon, J., Huyens, N., Rooman, I. & Bouwens, L. Exocrine cell transdifferentiation in dexamethasone-treated rat pancreas. Virchows Arch. 444, 61–65 (2004).

    Article  PubMed  Google Scholar 

  44. Baeyens, L. et al. In vitro generation of insulin-producing beta cells from adult exocrine pancreatic cells. Diabetologia 48, 49–57 (2005).

    Article  CAS  PubMed  Google Scholar 

  45. Rooman, I., et al. Mitogenic effect of gastrin and expression of gastrin receptors in duct-like cells of rat pancreas. Gastroenterology 121, 940–949 (2001).

    Article  CAS  PubMed  Google Scholar 

  46. Rooman, I. & Bouwens, L. Combined gastrin and epidermal growth factor treatment induces islet regeneration and restores normoglycaemia in C57Bl6/J mice treated with alloxan. Diabetologia 47, 259–265 (2004).

    Article  CAS  PubMed  Google Scholar 

  47. Jensen, J.N. et al. Recapitulation of elements of embryonic development in adult mouse pancreatic regeneration. Gastroenterology 128, 728–741 (2005).

    Article  CAS  PubMed  Google Scholar 

  48. Bonner-Weir, S. et al. In vitro cultivation of human islets from expanded ductal tissue. Proc. Natl. Acad. Sci. USA 97, 7999–8004 (2000).

    Article  CAS  PubMed  Google Scholar 

  49. Gao, R. et al. Characterization of endocrine progenitor cells and critical factors for their differentiation in human adult pancreatic cell culture. Diabetes 52, 2007–2015 (2003).

    Article  CAS  PubMed  Google Scholar 

  50. Suarez-Pinzon, W.L., et al. Combination therapy with epidermal growth factor and gastrin induces neogenesis of human islet β-cells from pancreatic duct cells and an increase in functional β-cell mass. J. Clin. Endocrinol. Metab. 90, 3401–3409 (2005).

    Article  CAS  PubMed  Google Scholar 

  51. Jiang, Y. et al. Pluripotency of mesenchymal stem cells derived from adult marrow. Nature 418, 41–49 (2002).

    Article  CAS  PubMed  Google Scholar 

  52. Ianus, A., Holz, G.G., Theise, N.D. & Hussain, M.A. In vivo derivation of glucose-competent pancreatic endocrine cells from bone marrow without evidence of cell fusion. J. Clin. Invest. 111, 843–850 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hess, D. et al. Bone marrow-derived stem cells initiate pancreatic regeneration. Nat. Biotechnol. 21, 763–770 (2003).

    Article  CAS  PubMed  Google Scholar 

  54. Mathews, V. et al. Recruitment of bone marrow-derived endothelial cells to sites of pancreatic beta-cell injury. Diabetes 53, 91–98 (2004).

    Article  CAS  PubMed  Google Scholar 

  55. Tang, D.Q. et al. In vivo and in vitro characterization of insulin-producing cells obtained from murine bone marrow. Diabetes 53, 1721–1732 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Zorina, T.D. et al. Recovery of the endogenous beta cell function in the NOD model of autoimmune diabetes. Stem Cells 21, 377–388 (2003).

    Article  PubMed  Google Scholar 

  57. Kodama, S., et al. Islet regeneration during the reversal of autoimmune diabetes in NOD mice. Science 302, 1223–1227 (2003).

    Article  CAS  PubMed  Google Scholar 

  58. Ogawa, N., et al. Cure of overt diabetes in NOD mice by transient treatment with anti-lymphocyte serum and exendin-4. Diabetes 53, 1700–1705 (2004).

    Article  CAS  PubMed  Google Scholar 

  59. Chatenoud, L., Primo, J. & Bach, J.F. CD3 antibody-induced dominant self tolerance in overtly diabetic NOD mice. J. Immunol. 158, 2947–2954 (1997).

    CAS  PubMed  Google Scholar 

  60. Fujita, Y., Cheung, A.T. & Kieffer, T.J. Harnessing the gut to treat diabetes. Pediatr. Diabetes (suppl. 2) 5, 57–69 (2004).

    Article  PubMed  Google Scholar 

  61. Ferber, S. et al. Pancreatic and duodenal homeobox gene 1 induces expression of insulin genes in liver and ameliorates streptozotocin-induced hyperglycemia. Nat. Med. 6, 568–572 (2000).

    Article  CAS  PubMed  Google Scholar 

  62. Ber, I. et al. Functional, persistent, and extended liver to pancreas transdifferentiation. J. Biol. Chem. 278, 31950–31957 (2003).

    Article  CAS  PubMed  Google Scholar 

  63. Kaneto, H. et al. A crucial role of mafA as a novel therapeutic target for diabetes. J. Biol. Chem. 280, 15047–15052 (2005).

    Article  CAS  PubMed  Google Scholar 

  64. Kojima, H. et al. NeuroD-betacellulin gene therapy induces islet neogenesis in the liver and reverses diabetes in mice. Nat. Med. 9, 596–603 (2003).

    Article  CAS  PubMed  Google Scholar 

  65. Zalzman, M. et al. Reversal of hyperglycemia in mice by using human expandable insulin-producing cells differentiated from fetal liver progenitor cells. Proc. Natl. Acad. Sci. USA 100, 7253–7258 (2003).

    Article  CAS  PubMed  Google Scholar 

  66. Kaneto, H. et al. PDX-1/VP16 fusion protein, together with neuroD or ngn3, markedly induces insulin gene transcription and ameliorates glucose tolerance. Diabetes 54, 1009–1022 (2005).

    Article  CAS  PubMed  Google Scholar 

  67. Yang, L. et al. In vitro trans-differentiation of adult hepatic stem cells into pancreatic endocrine hormone-producing cells. Proc. Natl. Acad. Sci. USA 99, 8078–8083 (2002).

    Article  CAS  PubMed  Google Scholar 

  68. Cao, L.Z., Tang, D.Q., Horb, M.E., Li, S.W. & Yang, L.J. High glucose is necessary for complete maturation of Pdx1–VP16-expressing hepatic cells into functional insulin-producing cells. Diabetes 53, 3168–3178 (2004).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Bruning, J.C. et al. Development of a novel polygenic model of NIDDM in mice heterozygous for IR and IRS-1 null alleles. Cell 88, 561–572 (1997).

    Article  CAS  PubMed  Google Scholar 

  70. Butler, A.E. et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes 52, 102–110 (2003).

    Article  CAS  PubMed  Google Scholar 

  71. Rosenberg, L. et al. A pentadecapeptide fragment of islet neogenesis-associated protein increases beta-cell mass and reverses diabetes in C57BL/6J mice. Ann. Surg. 240, 875–884 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  72. Li, L., et al. Activin A and betacellulin: effect on regeneration of pancreatic beta-cells in neonatal streptozotocin-treated rats. Diabetes 53, 608–615 (2004).

    Article  CAS  PubMed  Google Scholar 

  73. Brubaker, P.L. & Drucker, D.J. Minireview: glucagon-like peptides regulate cell proliferation and apoptosis in the pancreas, gut, and central nervous system. Endocrinology 145, 2653–2659 (2004).

    Article  CAS  PubMed  Google Scholar 

  74. DeFronzo, R.A., et al. Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care 28, 1092–1100 (2005).

    Article  CAS  PubMed  Google Scholar 

  75. Kendall, D.M. et al. Effects of exenatide (exendin-4) on glycemic control over 30 weeks in patients with type 2 dia betes treated with metformin and a sulfonylurea. Diabetes Care 28, 1083–1091 (2005).

    Article  CAS  PubMed  Google Scholar 

  76. Ratner, R.E., Feeley, D., Buse, J.B. & Schwartz, S.L. Double-blind, placebo-controlled trial of islet neogenesis gene associated protein (INGAP) in type 1 diabetes. Diabetes (suppl. 1) 54, 11-LB (late breaking abstract) (2005).

    Google Scholar 

  77. Ratner, R.E., Feeley, D., Buse, J.B. & Fischer, J.S. Double-blind, placebo-controlled trial of islet neogenesis gene associated protein (INGAP) in type 2 diabetes. Diabetes (suppl. 1) 54, 12-LB (late breaking abstract) (2005).

    Google Scholar 

Download references

Acknowledgements

The research that provides the background for this review has been supported by the National Institutes of Health, the Juvenile Diabetes Foundation Research Foundation, the Diabetes Research and Wellness Foundation and an important group of private donors.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Susan Bonner-Weir.

Ethics declarations

Competing interests

G.C.W. in on an advisory board for Amylin, which makes exendatide (extendin 4), but does not own any Amylin stock.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bonner-Weir, S., Weir, G. New sources of pancreatic β-cells. Nat Biotechnol 23, 857–861 (2005). https://doi.org/10.1038/nbt1115

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1115

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing