Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Integrative model of the response of yeast to osmotic shock

A Corrigendum to this article was published on 01 October 2006

Abstract

Integration of experimental studies with mathematical modeling allows insight into systems properties, prediction of perturbation effects and generation of hypotheses for further research. We present a comprehensive mathematical description of the cellular response of yeast to hyperosmotic shock. The model integrates a biochemical reaction network comprising receptor stimulation, mitogen-activated protein kinase cascade dynamics, activation of gene expression and adaptation of cellular metabolism with a thermodynamic description of volume regulation and osmotic pressure. Simulations agree well with experimental results obtained under different stress conditions or with specific mutants. The model is predictive since it suggests previously unrecognized features of the system with respect to osmolyte accumulation and feedback control, as confirmed with experiments. The mathematical description presented is a valuable tool for future studies on osmoregulation in yeast and—with appropriate modifications—other organisms. It also serves as a starting point for a comprehensive description of cellular signaling.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the response of yeast to hyperosmotic stress.
Figure 2: Steady states of the phosphorelay module and the metabolism module.
Figure 3: Time courses for key molecules of the osmotic shock response monitored in the standard experiment, that is, a single osmotic shock with 0.5 M NaCl at time 0 min.
Figure 4: Test of model predictions and effects of system perturbations.
Figure 5: Test of model predictions for the experimental scenario of two subsequent osmotic shock treatments at various time points.

Similar content being viewed by others

References

  1. Somero, G.N. & Yancey, P.H. in Handbook of Physiology (eds. Hoffmann, J.F. & Jamieson, J.D.) 441–484, (Oxford University Press, Oxford, New York, 1997).

    Google Scholar 

  2. Hohmann, S. Osmotic stress signaling and osmoadaptation in yeasts. Microbiol. Mol. Biol. Rev. 66, 300–372 (2002).

    Article  CAS  Google Scholar 

  3. de Nadal, E., Alepuz, P.M. & Posas, F. Dealing with osmostress through MAP kinase activation. EMBO Rep. 3, 735–740 (2002).

    Article  CAS  Google Scholar 

  4. Reiser, V., Raitt, D.C. & Saito, H. Yeast osmosensor Sln1 and plant cytokinin receptor Cre1 respond to changes in turgor pressure. J. Cell Biol. 161, 1035–1040 (2003).

    Article  CAS  Google Scholar 

  5. Batchelor, E. & Goulian, M. Robustness and the cycle of phosphorylation and dephosphorylation in a two-component regulatory system. Proc. Natl. Acad. Sci. USA 100, 691–696 (2003).

    Article  CAS  Google Scholar 

  6. Tyson, J.J., Chen, K. & Novak, B. Network dynamics and cell physiology. Nat. Rev. Mol. Cell Biol. 2, 908–916 (2001).

    Article  CAS  Google Scholar 

  7. Schoeberl, B., Eichler-Jonsson, C., Gilles, E.D. & Muller, G. Computational modeling of the dynamics of the MAP kinase cascade activated by surface and internalized EGF receptors. Nat. Biotechnol. 20, 370–375 (2002).

    Article  Google Scholar 

  8. Kitano, H. Computational systems biology. Nature 420, 206–210 (2002).

    Article  CAS  Google Scholar 

  9. Kofahl, B. & Klipp, E. Modelling the dynamics of the yeast pheromone pathway. Yeast 21, 831–850 (2004).

    Article  CAS  Google Scholar 

  10. Klipp, E., Herwig, R., Kowald, A., Wierling, C. & Lehrach, H. Systems Biology in Practice Concepts, Implementation and Application (Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim, 2005).

    Book  Google Scholar 

  11. Levchenko, A., Bruck, J. & Sternberg, P.W. Scaffold proteins may biphasically affect the levels of mitogen-activated protein kinase signaling and reduce its threshold properties. Proc. Natl. Acad. Sci. USA 97, 5818–5823 (2000).

    Article  CAS  Google Scholar 

  12. Ferrell, J.E., Jr. Self-perpetuating states in signal transduction: positive feedback, double-negative feedback and bistability. Curr. Opin. Cell Biol. 14, 140–148 (2002).

    Article  CAS  Google Scholar 

  13. Llorens, M., Nuno, J.C., Rodriguez, Y., Melendez-Hevia, E. & Montero, F. Generalization of the theory of transition times in metabolic pathways: a geometrical approach. Biophys. J. 77, 23–36 (1999).

    Article  CAS  Google Scholar 

  14. Heinrich, R., Neel, B.G. & Rapoport, T.A. Mathematical models of protein kinase signal transduction. Mol. Cell 9, 957–970 (2002).

    Article  CAS  Google Scholar 

  15. Huang, C.Y. & Ferrell, J.E., Jr. Ultrasensitivity in the mitogen-activated protein kinase cascade. Proc. Natl. Acad. Sci. USA 93, 10078–10083 (1996).

    Article  CAS  Google Scholar 

  16. Bhalla, U.S. & Iyengar, R. Emergent properties of networks of biological signaling pathways. Science 283, 381–387 (1999).

    Article  CAS  Google Scholar 

  17. Kholodenko, B.N. Negative feedback and ultrasensitivity can bring about oscillations in the mitogen-activated protein kinase cascades. Eur. J. Biochem. 267, 1583–1588 (2000).

    Article  CAS  Google Scholar 

  18. Asthagiri, A.R. & Lauffenburger, D.A. A computational study of feedback effects on signal dynamics in a mitogen-activated protein kinase (MAPK) pathway model. Biotechnol. Prog. 17, 227–239 (2001).

    Article  CAS  Google Scholar 

  19. Sedaghat, A.R., Sherman, A. & Quon, M.J. A mathematical model of metabolic insulin signaling pathways. Am. J. Physiol. Endocrinol. Metab. 283, E1084–E1101 (2002).

    Article  CAS  Google Scholar 

  20. Hartwell, L.H., Hopfield, J.J., Leibler, S. & Murray, A.W. From molecular to modular cell biology. Nature 402, C47–C52 (1999).

    Article  CAS  Google Scholar 

  21. O'Rourke, S.M. & Herskowitz, I. Unique and redundant roles for HOG MAPK pathway components as revealed by whole-genome expression analysis. Mol. Biol. Cell 15, 532–542 (2004).

    Article  CAS  Google Scholar 

  22. Camisard, V., Brienne, J.P., Baussart, H., Hammann, J. & Suhr, H. Inline characterization of cell concentration and cell volume in agitated bioreactors using in situ microscopy: application to volume variation induced by osmotic stress. Biotechnol. Bioeng. 78, 73–80 (2002).

    Article  CAS  Google Scholar 

  23. Albertyn, J., Hohmann, S. & Prior, B.A. Characterization of the osmotic-stress response in Saccharomyces cerevisiae: osmotic stress and glucose repression regulate glycerol-3-phosphate dehydrogenase independently. Curr. Genet. 25, 12–18 (1994).

    Article  CAS  Google Scholar 

  24. Saito, H. & Tatebayashi, K. Regulation of the osmoregulatory HOG MAPK cascade in yeast. J. Biochem. 136, 267–272 (2004).

    Article  CAS  Google Scholar 

  25. Rep, M., Albertyn, J., Thevelein, J.M., Prior, B.A. & Hohmann, S. Different signalling pathways contribute to the control of GPD1 gene expression by osmotic stress in Saccharomyces cerevisiae. Microbiol. 145, 715–727 (1999).

    Article  CAS  Google Scholar 

  26. Van Wuytswinkel, O. et al. Response of Saccharomyces cerevisiae to severe osmotic stress: evidence for a novel activation mechanism of the HOG MAP kinase pathway. Mol. Microbiol. 37, 382–397 (2000).

    Article  CAS  Google Scholar 

  27. Ansell, R., Granath, K., Hohmann, S., Thevelein, J.M. & Adler, L. The two isoenzymes for yeast NAD+-dependent glycerol 3-phosphate dehydrogenase encoded by GPD1 and GPD2 have distinct roles in osmoadaptation and redox regulation. EMBO J. 16, 2179–2187 (1997).

    Article  CAS  Google Scholar 

  28. Krantz, M. et al. Anaerobicity prepares Saccharomyces cerevisiae cells for faster adaptation to osmotic shock. Eukaryot. Cell 3, 1381–1390 (2004).

    Article  CAS  Google Scholar 

  29. Maeda, T., Wurgler-Murphy, S.M. & Saito, H. A two-component system that regulates an osmosensing MAP kinase cascade in yeast. Nature 369, 242–245 (1994).

    Article  CAS  Google Scholar 

  30. Hornberg, J.J. et al. Principles behind the multifarious control of signal transduction. ERK phosphorylation and kinase/phosphatase control. FEBS J. 272, 244–258 (2005).

    Article  CAS  Google Scholar 

  31. Lu, J.M., Deschenes, R.J. & Fassler, J.S. Saccharomyces cerevisiae histidine phosphotransferase Ypd1p shuttles between the nucleus and cytoplasm for SLN1-dependent phosphorylation of Ssk1p and Skn7p. Eukaryot. Cell 2, 1304–1314 (2003).

    Article  CAS  Google Scholar 

  32. Hwang, I. & Sheen, J. Two-component circuitry in Arabidopsis cytokinin signal transduction. Nature 413, 383–389 (2001).

    Article  CAS  Google Scholar 

  33. Tamas, M.J. et al. Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol. Microbiol. 31, 1087–1104 (1999).

    Article  CAS  Google Scholar 

  34. Pettersson, H., Filipsson, C., Becit, E., Brive, L. & Hohmann, S. Aquaporins in yeasts and filamentous fungi. Biol. Cell. 97, 487–500 (2005).

    Article  CAS  Google Scholar 

  35. Wurgler-Murphy, S.M., Maeda, T., Witten, E.A. & Saito, H. Regulation of the Saccharomyces cerevisiae HOG1 mitogen-activated protein kinase by the PTP2 and PTP3 protein tyrosine phosphatases. Mol. Cell. Biol. 17, 1289–1297 (1997).

    Article  CAS  Google Scholar 

  36. Karlgren, S. et al. Conditional osmotic stress in yeast: a system to study transport through aquaglyceroporins and osmostress signaling. J. Biol. Chem. 280, 7186–7193 (2005).

    Article  CAS  Google Scholar 

  37. Rizzi, M., Baltes, M., Theobald, U. & Reuss, M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: II. Mathematical model. Biotechnol. Bioeng. 55, 39–54 (1997).

    Article  Google Scholar 

  38. Martinez de Maranon, I., Marechal, P.A. & Gervais, P. Passive response of Saccharomyces cerevisiae to osmotic shifts: cell volume variations depending on the physiological state. Biochem. Biophys. Res. Commun. 227, 519–523 (1996).

    Article  CAS  Google Scholar 

  39. Hynne, F., Dano, S. & Sorensen, P.G. Full-scale model of glycolysis in Saccharomyces cerevisiae. Biophys. Chem. 94, 121–163 (2001).

    Article  CAS  Google Scholar 

  40. Teusink, B. et al. Can yeast glycolysis be understood in terms of in vitro kinetics of the constituent enzymes? Testing biochemistry. Eur. J. Biochem. 267, 5313–5329 (2000).

    Article  CAS  Google Scholar 

  41. Theobald, U., Mailinger, W., Baltes, M., Rizzi, M. & Reuss, M. In vivo analysis of metabolic dynamics in Saccharomyces cerevisiae: I. Experimental observations. Biotechnol. Bioeng. 55, 305–316 (1997).

    Article  CAS  Google Scholar 

  42. Tamas, M.J., Rep, M., Thevelein, J.M. & Hohmann, S. Stimulation of the yeast high osmolarity glycerol (HOG) pathway: evidence for a signal generated by a change in turgor rather than by water stress. FEBS Lett. 472, 159–165 (2000).

    Article  CAS  Google Scholar 

  43. Gervais, P. & Beney, L. Osmotic mass transfer in the yeast Saccharomyces cerevisiae. Cell Mol. Biol. (Noisy-le-grand) 47, 831–839 (2001).

    CAS  Google Scholar 

  44. Gervais, P., Molin, P., Marechal, P.A. & Herail-Foussereau, C. Thermodynamics of yeast cell osmoregulation: passive mechanisms. J. Biol. Phys. 22, 73–86 (1996).

    Article  CAS  Google Scholar 

  45. Kedem, O. & Katchalsky, A. Thermodynamic analysis of the permeability of biological membranes to non-electrolytes. Biochim. Biophys. Acta 27, 229–246 (1958).

    Article  CAS  Google Scholar 

  46. Caley, S.D., Guttman, H.J. & Record, M.T.J. Biophysical characterization of changes in amounts and activity of Escherichia coli cell and compartment water and turgor pressure in response to osmotic stress. Biophys. J. 78, 1748–1764 (2000).

    Article  Google Scholar 

  47. Zimmermann, U. Physics of turgor- and osmoregulation. Ann. Rev. Plant Physiol. 29, 121–148 (1978).

    Article  CAS  Google Scholar 

  48. Reed, R.H., Chudek, J.A., Foster, R. & Gadd, G.M. Osmotic significance of glycerol accumulation in exponentially growing yeasts. Appl. Environ. Microbiol. 53, 2119–2123 (1987).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

E.K. is supported by the Berlin Center of Genome Based Bioinformatics (BCB), financed by the German Federal Ministry for Education and Research (BMBF, grant 031U109C). B.N. and P.G. are PhD students of the National Research School for Genomics and Bioinformatics, Göteborg, supported by the Swedish Ministry for Education and Research. S.H. holds a research position of the Swedish Research Council. Research in his lab is supported by the European Commission (contracts QLK3-CT2000-00778 and QLK1-CT2001-01066) and the Human Frontier Science Program. Systems Biology of yeast osmoregulation is supported by the European Commission (the QUASI project, contract LSHG-CT2003-503230 to S.H. and E.K.).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Edda Klipp or Stefan Hohmann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Standard experiment (one single osmotic shock in wild type cells with 0.5 M NaCl at time zero) used for parameter determination. (PDF 24 kb)

Supplementary Fig. 2

Parameter dependence of the behavior of the MAPK cascade. (PDF 23 kb)

Supplementary Fig. 3

Sensitivity S of the Euclidean distance D between experimental data and simulations with respect to parameter variation. (PDF 36 kb)

Supplementary Fig. 4

Dependence of characteristic system features on parameter values. (PDF 44 kb)

Supplementary Fig. 5

Simulation of osmotic shocks with increasing level of NaCl. (PDF 35 kb)

Supplementary Fig. 6

Open Fps1. (PDF 18 kb)

Supplementary Fig. 7

Yeast cells overproducing glycerol. (PDF 24 kb)

Supplementary Fig. 8

Overproduction of protein phosphatase Ptp2 in wild type cells and cells with unregulated Fps1. (PDF 91 kb)

Supplementary Fig. 9

Profile of intracellular glycerol levels in wild type cells. (PDF 18 kb)

Supplementary Fig. 10

Simulations of enhanced expression of activated alleles of Ssk2 (dark dashed lines) and Hog1 (gray dashed lines). (PDF 15 kb)

Supplementary Table 1

Equations governing the dynamics of the phosphorelay module. (PDF 30 kb)

Supplementary Table 2

Equations governing the dynamics of the MAP kinase cascade. (PDF 36 kb)

Supplementary Table 3

Equations governing the dynamics of transcription and translation. (PDF 26 kb)

Supplementary Table 4

Equations governing the dynamics of the carbohydrate metabolism. (PDF 46 kb)

Supplementary Table 5

Set of equations governing the changes of volume and osmotic pressure. (PDF 60 kb)

Supplementary Table 6

Integrative model of the response of yeast cells to osmotic shock. (PDF 65 kb)

Supplementary Data (PDF 76 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klipp, E., Nordlander, B., Krüger, R. et al. Integrative model of the response of yeast to osmotic shock. Nat Biotechnol 23, 975–982 (2005). https://doi.org/10.1038/nbt1114

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1114

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing