Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A molecular ruler based on plasmon coupling of single gold and silver nanoparticles

Abstract

Förster Resonance Energy Transfer has served as a molecular ruler that reports conformational changes and intramolecular distances of single biomolecules1,2,3,4. However, such rulers suffer from low and fluctuating signal intensities, limited observation time due to photobleaching, and an upper distance limit of 10 nm. Noble metal nanoparticles have plasmon resonances in the visible range and do not blink or bleach. They have been employed as alternative probes to overcome the limitations of organic fluorophores5,6, and the coupling of plasmons in nearby particles has been exploited to detect particle aggregation by a distinct color change in bulk experiments7,8,9. Here we demonstrate that plasmon coupling can be used to monitor distances between single pairs of gold and silver nanoparticles. We followed the directed assembly of gold and silver nanoparticle dimers in real time and studied the kinetics of single DNA hybridization events. These 'plasmon rulers' allowed us to continuously monitor separations of up to 70 nm for >3,000 s.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Color effect on directed assembly of DNA-functionalized gold and silver nanoparticles.
Figure 2: Effect of buffer exchange.
Figure 3: Spectral shift upon DNA hybridization.

Similar content being viewed by others

References

  1. Weiss, S. Fluorescence spectroscopy of single biomolecules. Science 283, 1676–1683 (1999).

    Article  CAS  Google Scholar 

  2. Zhuang, X. et al. A single-molecule study of RNA catalysis and folding. Science 288, 2048–2051 (2000).

    Article  CAS  Google Scholar 

  3. Yildiz, A. et al. Myosin V walks hand-over-hand: Single fluorophore imaging with 1.5-nm localization. Science 300, 2061–2065 (2003).

    Article  CAS  Google Scholar 

  4. Blanchard, S.C., Kim, H.D., Gonzalez, R.L., Puglisi, J.D. & Chu, S. tRNA dynamics on the ribosome during translation. Proc. Natl. Acad. Sci. USA 101, 12893–12898 (2004).

    Article  CAS  Google Scholar 

  5. Yguerabide, J. & Yguerabide, E.E. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications - II. Experimental characterization. Anal. Biochem. 262, 157–176 (1998).

    Article  CAS  Google Scholar 

  6. Taton, T.A., Mirkin, C.A. & Letsinger, R.L. Scanometric DNA array detection with nanoparticle probes. Science 289, 1757–1760 (2000).

    Article  CAS  Google Scholar 

  7. Storhoff, J.J., Lucas, A.D., Garimella, V., Bao, Y.P. & Muller, U.R. Homogeneous detection of unamplified genomic DNA sequences based on colorimetric scatter of gold nanoparticle probes. Nat. Biotechnol. 22, 883–887 (2004).

    Article  CAS  Google Scholar 

  8. Li, H. & Rothberg, L. Colorimetric detection of DNA sequences based on electrostatic interactions with unmodified gold nanoparticles. Proc. Natl. Acad. Sci. USA 101, 14036–14039 (2004).

    Article  CAS  Google Scholar 

  9. Dragnea, B., Chen, C., Kwak, E.S., Stein, B. & Kao, C.C. Gold nanoparticles as spectroscopic enhancers for in vitro studies on single viruses. J. Am. Chem. Soc. 125, 6374–6375 (2003).

    Article  CAS  Google Scholar 

  10. Siedentopf, H. & Zsigmondy, R. Über Sichtbarmachung und Größenbestimmung ultramikroskopischer Teilchen, mit besonderer Anwendung auf Goldrubingläser. Annalen der Physik 10, 1–39 (1903).

    CAS  Google Scholar 

  11. Mie, G. Beiträge zur Optik trüber Medien speziell kolloidaler Metallösungen. Annalen der Physik 25, 377–445 (1908).

    Article  CAS  Google Scholar 

  12. Moskovits, M. Surface-Enhanced Spectroscopy. Rev. Mod. Phys. 57, 783–826 (1985).

    Article  CAS  Google Scholar 

  13. Elghanian, R., Storhoff, J.J., Mucic, R.C., Letsinger, R.L. & Mirkin, C.A. Selective colorimetric detection of polynucleotides based on the distance-dependent optical properties of gold nanoparticles. Science 277, 1078–1081 (1997).

    Article  CAS  Google Scholar 

  14. McFarland, A.D. & Van Duyne, R.P. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 3, 1057–1062 (2003).

    Article  CAS  Google Scholar 

  15. Raschke, G. et al. Biomolecular recognition based on single gold nanoparticle light scattering. Nano Lett. 3, 935–938 (2003).

    Article  CAS  Google Scholar 

  16. Kreibig, U. & Vollmer, M. Optical Properties of Metal Clusters Vol. 25 (Springer-Verlag, Berlin, 1995).

    Book  Google Scholar 

  17. Wei, Q.H., Su, K.H., Durant, S. & Zhang, X. Plasmon resonance of finite one-dimensional Au nanoparticle chains. Nano Lett. 4, 1067–1071 (2004).

    Article  CAS  Google Scholar 

  18. Su, K.H. et al. Interparticle coupling effects on plasmon resonances of nanogold particles. Nano Lett. 3, 1087–1090 (2003).

    Article  CAS  Google Scholar 

  19. Rechberger, W. et al. Optical properties of two interacting gold nanoparticles. Opt. Commun. 220, 137–141 (2003).

    Article  CAS  Google Scholar 

  20. Mirkin, C.A., Letsinger, R.L., Mucic, R.C. & Storhoff, J.J. A DNA-based method for rationally assembling nanoparticles into macroscopic materials. Nature 382, 607–609 (1996).

    Article  CAS  Google Scholar 

  21. Alivisatos, A.P. et al. Organization of 'nanocrystal molecules' using DNA. Nature 382, 609–611 (1996).

    Article  CAS  Google Scholar 

  22. Smith, S.B., Cui, Y.J. & Bustamante, C. Overstretching B-DNA: The elastic response of individual double-stranded and single-stranded DNA molecules. Science 271, 795–799 (1996).

    Article  CAS  Google Scholar 

  23. Singh-Zocchi, M., Dixit, S., Ivanov, V. & Zocchi, G. Single-molecule detection of DNA hybridization. Proc. Natl. Acad. Sci. USA 100, 7605–7610 (2003).

    Article  CAS  Google Scholar 

  24. Hagan, M.F. & Chakraborty, A.K. Hybridization dynamics of surface immobilized DNA. J. Chem. Phys. 120, 4958–4968 (2004).

    Article  CAS  Google Scholar 

  25. Sönnichsen, C. et al. Drastic reduction of plasmon damping in gold nanorods. Phys. Rev. Lett. 88, 077402 (2002).

    Article  Google Scholar 

  26. Park, S.J., Lazarides, A.A., Storhoff, J.J., Pesce, L. & Mirkin, C.A. The structural characterization of oligonucleotide-modified gold nanoparticle networks formed by DNA hybridization. J. Phys. Chem. B 108, 12375–12380 (2004).

    Article  CAS  Google Scholar 

  27. Tinoco, I. Force as a useful variable in reactions: Unfolding RNA. Annu. Rev. Biophys. Biomol. Struct. 33, 363–385 (2004).

    Article  CAS  Google Scholar 

  28. Demers, L.M. et al. A fluorescence-based method for determining the surface coverage and hybridization efficiency of thiol-capped oligonucleotides bound to gold thin films and nanoparticles. Anal. Chem. 72, 5535–5541 (2000).

    Article  CAS  Google Scholar 

  29. Itoh, H. et al. Mechanically driven ATP synthesis by F-1-ATPase. Nature 427, 465–468 (2004).

    Article  CAS  Google Scholar 

  30. Kanaras, A.G., Wang, Z.X., Bates, A.D., Cosstick, R. & Brust, M. Towards multistep nanostructure synthesis: Programmed enzymatic self-assembly of DNA/gold systems. Angew. Chem. Int. Ed. 42, 191–194 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We acknowledge financial support through the Alexander von Humboldt Foundation (C.S.), the Otto A. Wipprecht Foundation (B.M.R.), Deutsche Forschungsgemeinschaft (B.M.R.), US Department of Energy contracts DE-AC03-76SF00098 and W-7405-ENG-36.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Jan Liphardt or A Paul Alivisatos.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Control experiments (PDF 413 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sönnichsen, C., Reinhard, B., Liphardt, J. et al. A molecular ruler based on plasmon coupling of single gold and silver nanoparticles. Nat Biotechnol 23, 741–745 (2005). https://doi.org/10.1038/nbt1100

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1100

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing