Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment

Abstract

Molecules that selectively target and occlude new blood vessels would be useful for diagnosis and treatment of pathologies associated with angiogenesis. We show that a phage-derived human antibody fragment (L19) with high affinity for the ED-B domain of fibronectin, a marker of angiogenesis, selectively localizes to newly formed blood vessels in a rabbit model of ocular angiogenesis. The L19 antibody, chemically coupled to a photosensitizer and irradiated with red light, mediates complete and selective occlusion of ocular neovasculature and promotes apoptosis of the corresponding endothelial cells. These results demonstrate that new ocular blood vessels can be distinguished immunochemically from preexisting ones and suggest that the targeted delivery of photosensitizers may be effective in treating angiogenesis-related pathologies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Immunohistochemical studies of ocular structures using the L19 antibody.
Figure 2: Immunophotodetection of fluorescently labeled antibodies targeting ocular angiogenesis.
Figure 3: Macroscopic images of eyes of rabbits treated with photosensitizer conjugates.
Figure 4: Microscopic analysis of selective blood vessel occlusion.

Similar content being viewed by others

References

  1. Folkman, J. Angiogenesis in cancer, vascular, rheumathoid and other disease. Nat. Med. 1, 27–31 (1995).

    Article  CAS  Google Scholar 

  2. Risau, W. Mechanisms of angiogenesis. Nature 386, 671–674 (1997).

    Article  CAS  Google Scholar 

  3. Lee, P., Wang, C.C. & Adamis, A.P. Ocular neovascularization: an epidemiologic review. Surv. Ophthalmol. 43, 245–269 (1998).

    Article  CAS  Google Scholar 

  4. Friedlander, M. et al. Involvement of integrins αvβ3 and αvβ5 in ocular neovascular diseases. Proc. Natl. Acad. Sci. USA 93, 9764–9769 (1996).

    Article  CAS  Google Scholar 

  5. Zetter, B.R. On target with tumor blood vessel markers. Nat. Biotechnol. 15, 1243–1244 (1997).

    Article  CAS  Google Scholar 

  6. Huang, H. et al. Tumor infarction in mice by antibody-directed targeting of tissue factor to tumor neo-vasculature. Science 275, 547–550 (1997).

    Article  CAS  Google Scholar 

  7. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  CAS  Google Scholar 

  8. Zardi, L. et al. Transformed human cells produce a new fibronectin isoform by preferential alternative splicing of a previously unobserved exon. EMBO J. 6, 2337–2342 (1987).

    Article  CAS  Google Scholar 

  9. Castellani, P. et al. The fibronectin isoform containing the ED-B oncofetal domain: a marker of angiogenesis. Int. J. Cancer 59, 612–618 (1994).

    Article  CAS  Google Scholar 

  10. Carnemolla, B. et al. High-affinity human recombinant antibodies to the oncofetal angiogenesis marker fibronectin ED-B domain. Int. J. Cancer 68, 397–405 (1996).

    Article  CAS  Google Scholar 

  11. Neri, D. et al. Targeting by affinity-matured recombinant antibody fragments of an angiogenesis associated fibronectin isoform. Nat. Biotechnol. 15, 1271–1275 (1997).

    Article  CAS  Google Scholar 

  12. Pini, A., et al. Design and use of a phage-display library: human antibodies with subnanomolar affinity against a marker of angiogenesis eluted from a two-dimensional gel. J. Biol. Chem. 273, 21769–21775 (1998).

    Article  CAS  Google Scholar 

  13. Tarli, L. et al. A high affinity human antibody that targets tumoural blood vessels. Blood 94, 192–198 (1999).

    CAS  Google Scholar 

  14. Viti, F., Tarli, L., Giovannoni, L., Zardi, L. & Neri, D. Increased binding affinity and valence of recombinant antibody fragments lead to improved targeting of turmoral angiogenesis antibodies. Cancer Res. 59, 347–352 (1999).

    CAS  PubMed  Google Scholar 

  15. Winter, G., Griffiths, A.D., Hawkins, R.E. & Hoogenboom, H.R. Making antibodies by phage display technology. Annu. Rev. Immunol. 12, 433–455 (1994).

    Article  CAS  Google Scholar 

  16. Nissim, A. et al. Antibody fragments from a 'single pot' phage display library as immunochemical reagents. EMBO J. 13, 692–698 (1994).

    Article  CAS  Google Scholar 

  17. D'Amato, R.J., Loughnan, M.S., Flynn, E. & Folkman, J. Thalidomide is an inhibitor of angiogenesis. Proc. Natl. Acad. Sci. USA 91, 4082–4085 (1994).

    Article  CAS  Google Scholar 

  18. Folli, S. et al. Antibody-indocyanin conjugates for immunophotodetection of human squamous cell carcinoma in nude mice. Cancer Res. 54, 2643–2649 (1994).

    CAS  PubMed  Google Scholar 

  19. Yarmush, M.L. et al. Antibody targeted photolysis. Crit. Rev. Ther. Drug Carrier Syst. 10, 197–252 (1993).

    CAS  PubMed  Google Scholar 

  20. Rowe, P.M. Photodynamic therapy begins to shine. Lancet 351, 1496 (1998).

    Article  CAS  Google Scholar 

  21. Levy, J. Photodynamic therapy. Trends Biotechnol. 13, 14–18 (1995).

    Article  CAS  Google Scholar 

  22. Macular Photocoagulation Study Group. Visual outcome after laser photocoagulation for subfoveal choroidal neovascularization secondary to age-related macular degeneration. The influence of initial lesion size and initial visual acuity. Arch. Ophthalmol. 112, 480–488 (1994).

  23. Haimovici, R. et al. Localization of lipoprotein-delivered benzoporphyrin derivative in the rabbit eye. Curr. Eye Res. 16, 83–90 (1997).

    Article  CAS  Google Scholar 

  24. Schmidt-Erfurth, U. et al. Photodynamic therapy of subfoveal choroidal neovascularization: clinical and angiographic examples. Graefes Arch. Clin. Exp. Ophthalmol. 236, 365–374 (1998).

    Article  CAS  Google Scholar 

  25. Lu, X.M. et al. Sn-chlorin e6 antibacterial immunoconjugates. An in vitro and in vivo analysis. J. Immunol. Methods 156, 85–99 (1992).

    Article  CAS  Google Scholar 

  26. Gavrieli, Y., Sherman, Y. & Ben-Sasson, S.A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J. Cell. Biol. 119, 493–501 (1992).

    Article  CAS  Google Scholar 

  27. Regillo, C.D., Benson, W.E., Maguire, J.I. & Annesley, W.H. Jr. Indocyanine green angiography and occult choroidal neovascularization. Ophthalmology 101, 280–288 (1994).

    Article  CAS  Google Scholar 

  28. Van den Bergh, H. On the evolution of some endoscopic light delivery systems for photodynamic therapy. Endoscopy 30, 392–407 (1998).

    Article  CAS  Google Scholar 

  29. Wan, S., Parrish, J.A., Anderson, R.R. & Madden, M. Transmittance of nonionizing radiation in human tissues. Photochem. Photobiol. 34, 679–681 (1981).

    Article  CAS  Google Scholar 

  30. Murdter, T.E. et al. Enhanced uptake of doxorubicin into bronchial carcinoma: beta-glucuronidase mediates release of doxorubicin from a glucuronide prodrug (HMR 1826) at the tumor site. Cancer Res. 57, 2440–2445 (1997).

    CAS  PubMed  Google Scholar 

  31. Huston, J.S. et al. Protein engineering of antibody binding sites: recovery of specific activity in an anti-digoxin single-chain Fv analogue produced in Escherichia coli. Proc. Natl. Acad. Sci. USA 85, 5879–5883 (1988).

    Article  CAS  Google Scholar 

  32. Fattorusso, R. et al. NMR structure of the angiogenesis marker oncofoetal fibronectin ED-B domain. Structure 7, 381–390 (1999).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Prof. Dr. M. Friedlander (La Jolla, CA) for advice in the implementation of the cornea micropocket assay, Dr. F. Bootz for technical assistance with rabbit anesthesia, S. Demartis for help with the synthesis of chlorin derivatives, and Dr. A. Brändli and Dr. V. Taylor for critically reading the manuscript. Financial support from the Swiss Federal Institute of Technology (D.N.), the Swiss Bundesamt für Bildung und Wissenschaft (within the frame of an EU BIOTEC-2 Project; D.N.), the Roche Research Foundation (M.B.), and the Stiftung für Wissenschaftliche Forschung (M.B.) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dario Neri.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Birchler, M., Viti, F., Zardi, L. et al. Selective targeting and photocoagulation of ocular angiogenesis mediated by a phage-derived human antibody fragment. Nat Biotechnol 17, 984–988 (1999). https://doi.org/10.1038/13679

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13679

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing