Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Identification of a neuritogenic ligand of the neural cell adhesion molecule using a combinatorial library of synthetic peptides

An Erratum to this article was published on 01 May 2000

Abstract

The neural cell adhesion molecule (NCAM) plays a key role in neural development, regeneration, and learning. In this study, we identified a synthetic peptide-ligand of the NCAM Ig1 module by combinatorial chemistry and showed it could modulate NCAM-mediated cell adhesion and signal transduction with high potency. In cultures of dissociated neurons, this peptide, termed C3, stimulated neurite outgrowth by activating a signaling pathway identical to that activated by homophilic NCAM binding. A similar effect was shown for the NCAM Ig2 module, the endogenous ligand of NCAM Ig1. By nuclear magnetic resonance spectroscopy, the C3 binding site in the NCAM Ig1 module was mapped and shown to be different from the binding site of the NCAM Ig2 module. The C3 peptide may prove useful as a lead in development of therapies for neurodegenerative disorders, and the C3 binding site of NCAM Ig1 may represent a target for discovery of nonpeptide drugs.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Effect of NCAM Ig1 binding peptides on cell adhesion.
Figure 2: Effect of C3d on neurite outgrowth.
Figure 5: C3d and NCAM Ig2 stimulation of neurite outgrowth.
Figure 3: Neuritogenic effect of monomeric C3 peptide modified by substitutions (indicated with bold italics) or deletions (indicated by underlining positions of deleted residues).
Figure 4: Mapping of the binding sites of C3m and NCAM Ig2 onto the structure of NCAM Ig1.

Similar content being viewed by others

References

  1. Gegelashvili, G. & Bock, E. Cell recognition molecules of the immunoglobulin superfamily in the nervous system. Treatise Biomembranes 3, 33–75 (1996).

    Article  CAS  Google Scholar 

  2. Rønn, L.C.B., Hartz, B.P. & Bock, E. The neural cell adhesion molecule (NCAM) in development and plasticity of the nervous system Exp.Gerontol. 33, 853–864 (1999).

    Article  Google Scholar 

  3. Fields, R.D. & Itoh, K. Neural cell adhesion molecule in activity-dependent development and synaptic plasticity. Trends Neurosci. 19, 473–480 (1996).

    Article  CAS  Google Scholar 

  4. Cremer, H. et al. Inactivation of the N-CAM gene in mice results in size reduction of the olfactory bulb and deficits in spatial learning . Nature 367, 455–459 (1994).

    Article  CAS  Google Scholar 

  5. Tomasiewicz, H. et al. Genetic deletion of a neural cell adhesion molecule variant (N-CAM-180) produces distinct defects in the central nervous system. Neuron 11, 1163–1174 (1993).

    Article  CAS  Google Scholar 

  6. Covault, J. & Sanes, J.R. Neural cell adhesion molecule (N-CAM) accumulates in denervated and paralyzed skeletal muscles. Proc. Natl. Acad. Sci. USA 82, 4544–4548 (1985).

    Article  CAS  Google Scholar 

  7. Olsen, M., Zuber, C., Roth, J., Linnemann, D. & Bock, E. The ability to re-express polysialylated NCAM in soleus muscle after denervation is reduced in aged rats compared to young adult rats. Int. J. Dev. Neurosci. 13, 97–104 (1995).

    Article  CAS  Google Scholar 

  8. Doyle, E., Nolan, P.M., Bell, R. & Regan, C.M. Hippocampal NCAM180 transiently increases sialylation during the acquisition and consolidation of a passive avoidance response in the adult rat. J. Neurosci. Res. 31, 513–523 (1992).

    Article  CAS  Google Scholar 

  9. Lüthi, A., Laurent, J.P., Figurov, A., Muller, D. & Schachner, M. Hippocampal long-term potentiation and neural cell adhesion molecules L1 and NCAM. Nature 372, 777–779 (1994).

    Article  Google Scholar 

  10. Rønn, L.C.B., Bock, E., Linnemann, D. & Jahnsen, H. NCAM-antibodies modulate induction of long-term potentiation in rat hippocampal CA1. Brain Res. 677, 145–151 (1995).

    Article  Google Scholar 

  11. Scholey, A.B., Rose, S.P.R., Zamani, M.R., Bock, E. & Schachner, M. A role for the neural cell adhesion molecule (NCAM) in a late, consolidating phase of glycoprotein synthesis 6 hours following passive avoidance training of the young chick. Neuroscience 55, 499–509 (1993).

    Article  CAS  Google Scholar 

  12. Thiery, J.P., Brackenbury, R., Rutishauser, U. & Edelman, G.M. Adhesion among neural cells of the chick embryo. II. Purification and characterization of a cell adhesion molecule from neural retina. J. Biol. Chem. 252, 6841–6845 (1977).

    CAS  PubMed  Google Scholar 

  13. Moran, N. & Bock, E. Characterization of the kinetics of neural cell adhesion molecule homophilic binding. FEBS Lett. 242, 121–124 (1988).

    Article  CAS  Google Scholar 

  14. Probstmeier, R., Kuhn, K. & Schachner, M. Binding properties of the neural cell adhesion molecule to different components of the extracellular matrix. J. Neurochem. 53, 1794–1801 (1989).

    Article  CAS  Google Scholar 

  15. Kadmon, G., Kowitz, A., Altevogt, P. & Schachner, M. The neural cell adhesion molecule N-CAM enhances L1-dependent cell-cell interactions. J. Cell Biol. 110, 193–208 (1990).

    Article  CAS  Google Scholar 

  16. Doherty, P. & Walsh, F.S. CAM-FGF receptor interactions: a model for axonal growth. Mol. Cell. Neurosci. 8, 99–111 (1996).

    Article  CAS  Google Scholar 

  17. Schuch, U., Lohse, M.J. & Schachner, M. Neural cell adhesion molecules influence second messenger systems. Neuron 3, 13–20 (1989).

    Article  CAS  Google Scholar 

  18. Doherty, P., Ashton, S.V., Moore, S.E. & Walsh, F.S. Morphoregulatory activities of NCAM and N-cadherin can be accounted for by G protein-dependent activation of L- and N-type neuronal calcium-channels. Cell 67, 21–33 (1991).

    Article  CAS  Google Scholar 

  19. Beggs, H.E., Baragona, S.C., Hemperly, J.J. & Maness, P.F. NCAM140 interacts with the focal adhesion kinase p125fak and the SRC-related tyrosine kinase p59fyn. J. Biol. Chem. 272, 8310–8319 (1997).

    Article  CAS  Google Scholar 

  20. Sporns, O., Edelman, G.M. & Crossin, K.L. The neural cell adhesion molecule (N-CAM) inhibits proliferation in primary cultures of rat astrocytes. Proc. Natl. Acad. Sci. USA 92, 542–546 (1995).

    Article  CAS  Google Scholar 

  21. Edvardsen, K. et al. Transfection of glioma cells with the neural-cell adhesion molecule NCAM: effect on glioma-cell invasion and growth in vivo. Int. J. Cancer 58, 116–122 (1994).

    Article  CAS  Google Scholar 

  22. Krushel, L.A., Tai, M.H., Cunningham, B.A., Edelman, G.M. & Crossin, K.L. Neural cell adhesion molecule (N-CAM) domains and intracellular signaling pathways involved in the inhibition of astrocyte proliferation. Proc. Natl. Acad. Sci. USA 95, 2592–2596 (1998).

    Article  Google Scholar 

  23. Rao, Y., Zhao, X. & Siu, C.H. Mechanism of homophilic binding mediated by the neural cell adhesion molecule NCAM. Evidence for isologous interaction. J. Biol. Chem. 269, 27540–27548 (1994).

    CAS  PubMed  Google Scholar 

  24. Ranheim, T.S., Edelman, G.M. & Cunningham, B.A. Homophilic adhesion mediated by the neural cell adhesion molecule involves multiple immunoglobulin domains. Proc. Natl. Acad. Sci. USA 93, 4071–4075 (1996).

    Article  CAS  Google Scholar 

  25. Thomsen, N.K. et al. The three-dimensional structure of the first domain of neural cell adhesion molecule. Nat. Struct. Biol. 3, 581–585. (1996).

    Article  CAS  Google Scholar 

  26. Kiselyov, V.V. et al. The first immunoglobulin-like neural cell adhesion molecule (NCAM) domain is involved in double-reciprocal interaction with the second immunoglobulin-like NCAM domain and in heparin binding. J. Biol. Chem. 272, 10125–10134 (1997).

    Article  CAS  Google Scholar 

  27. Jensen, P.H. et al. Structure and interactions of NCAM modules 1 and 2—basic elements in neural cell adhesion. Nat. Struct. Biol. 6, 486–493 (1999).

    Article  CAS  Google Scholar 

  28. Cwirla, S.E. et al. Peptide agonist of the thrombopoietin receptor as potent as the natural cytokine. Science 276, 1696–1699 (1997).

    Article  CAS  Google Scholar 

  29. Wrighton, N.C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–464 (1996).

    Article  CAS  Google Scholar 

  30. Maar, T.E. et al. Characterization of microwell cultures of dissociated brain tissue for studies of cell-cell interactions. J. Neurosci. Res. 47, 163–172 (1997).

    Article  CAS  Google Scholar 

  31. Williams, E.J., Furness, J., Walsh, F.S. & Doherty, P. Activation of the FGF receptor underlies neurite outgrowth stimulated by L1, NCAM, and N-cadherin. Neuron 13, 583–594 (1994).

    Article  Google Scholar 

  32. Williams, E.J., Furness, J., Walsh, F.S. & Doherty, P. Characterisation of the second messenger pathway underlying neurite outgrowth stimulated by FGF. Development 120, 1685–1693 (1994).

    CAS  PubMed  Google Scholar 

  33. Williams, E.J., Mittal, B., Walsh, F.S. & Doherty, P. FGF inhibits neurite outgrowth over monolayers of astrocytes and fibroblasts expressing transfected cell adhesion molecules. J. Cell Sci. 108, 3523–3530 (1995).

    CAS  PubMed  Google Scholar 

  34. Williams, E.J., Walsh, F.S. & Doherty, P. Tyrosine kinase inhibitors can differentially inhibit integrin-dependent and CAM-stimulated neurite outgrowth. J. Cell Biol. 124, 1029–1037 (1994).

    Article  CAS  Google Scholar 

  35. Furka, A., Sebestyen, F., Asgedom, M. & Dibo, G. General method for rapid synthesis of multicomponent peptide mixtures. Int. J. Pept. Prot. Res. 37, 487–493 (1991).

    Article  CAS  Google Scholar 

  36. Østergaard, S., Hansen, P.H., Olsen, M. & Holm, A. Novel avidin and streptavidin binding sequences found in synthetic peptide libraries. FEBS Lett. 362, 306–308 (1995).

    Article  Google Scholar 

  37. Braunsweiler, L. & Ernst, R.R. Coherence transfer by isotropic mixing: Application to proton correlation spectroscopy. J. Magn. Reson. 53, 521–528 (1983).

    Google Scholar 

  38. Piantini, U., Sørensen, O.W. & Ernst, R.R. Multiple quantum filters for elucidating NMR coupling networks. J. Am. Chem. Soc. 104, 6800–6801 (1982).

    Article  CAS  Google Scholar 

  39. Kumar, A., Wagner, G., Ernst, R.R. & Wüthrich, K. Buildup rates of the nuclear Overhauser effect measured by two-dimensional proton magnetic resonance spectroscopy: implications for studies of protein conformation. J. Am. Chem. Soc. 103, 3654–3658 (1981).

    Article  CAS  Google Scholar 

  40. Bothner-By, A.A., Stephens, R.L., Lee, J., Warren, C.D. & Jeanloz, R.W. Structure determination of a tetrasaccharide: transient nuclear Overhauser effects in the rotating frame. J. Am. Chem. Soc. 106, 811–813 (1984).

    Article  CAS  Google Scholar 

  41. Kjær, M., Andersen, M.K. & Poulsen, F.M. Automated and semiautomated analysis of homo- and heteronuclear multidimensional nuclear magnetic resonance spectra of proteins: the program Pronto. Methods Enzymol. 239, 288–307 (1994).

    Article  Google Scholar 

Download references

Acknowledgements

The group of the Protein Laboratory was supported by the Danish Biotechnology Programme, The Lundbeck Foundation, the Danish Cancer Society, The Plasmid Foundation, The Danish Growth and Regeneration Programme, and the EU Programme on Biotechnology BIO4-CT96-0450. The group of the Carlsberg Laboratory was supported by the Danish Biotechnology Programme. This is a contribution from the Danish Instrument Center for NMR spectroscopy of Biological Macromolecules. We thank Nils Axelsen, Statens Serum Institut, Copenhagen, Denmark for thoughtful comments during the preparation of the manuscript and Jette Petersen and Charlotte Holm for expert technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lars C.B. Rønn.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rønn, L., Olsen, M., Østergaard, S. et al. Identification of a neuritogenic ligand of the neural cell adhesion molecule using a combinatorial library of synthetic peptides. Nat Biotechnol 17, 1000–1005 (1999). https://doi.org/10.1038/13697

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/13697

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing