Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

A high-throughput assay for assessing the cell permeability of combinatorial libraries

Abstract

There is great interest in the identification of synthetic molecules that are capable of manipulating protein-protein interactions in living cells. Peptides, unlike other classes of small molecules, have binding properties appropriate for this application, but most are poorly cell permeable and sensitive to proteases. Therefore, considerable effort has been expended in the development of libraries of oligomeric peptide-like molecules1,2,3,4. However, there are no clear-cut rules to guide the design of libraries rich in cell permeable compounds. Furthermore, currently available empirical methods to assess permeability may not accurately reflect true permeability and/or are capable of only modest throughput5,6,7,8,9,10,11,12. We describe here an assay for assessing the relative cell permeability of synthetic molecules in the context of steroid fusions that is capable of high throughput and can be used in any transfectable cell line.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Illustration of the design of the cell permeability assay.
Figure 2: Validation of the cell permeability assay.
Figure 3: Determination of the cell permeability of library-derived peptoids using a high-throughput assay.
Figure 4: The dependence of the maximum induction of luciferase on the net charges carried by the OxDex-AEEA-tetrameric peptoid-βAla conjugates.

Similar content being viewed by others

References

  1. Appella, D.H. et al. Residue-based control of helix shape in beta-peptide oligomers. Nature 387, 381–384 (1997).

    Article  CAS  Google Scholar 

  2. Seebach, D., Schaeffer, L., Brenner, M. & Hoyer, D. Design and synthesis of gamma-dipeptide derivatives with submicromolar affinities for human somatostatin receptors. Angew. Chem. Int. Edn. Engl. 42, 776–778 (2003).

    Article  CAS  Google Scholar 

  3. Zuckermann, R.N., Kerr, J.M., Kent, S.B.H. & Moos, W.H. Efficient method for the preparation of peptoids [oligo(N-substituted glycines)] by submonomer solid-phase synthesis. J. Am. Chem. Soc. 114, 10646–10647 (1992).

    Article  CAS  Google Scholar 

  4. Phillips, S.T., Rezac, M., Abel, U., Kossenjans, M. & Bartlett, P.A. “@-Tides”: The 1,2-Dihydro-3(6H)-pyridinone Unit as a -beta Strand Mimic. J. Am. Chem. Soc. 124, 58–66 (2002).

    Article  CAS  Google Scholar 

  5. Artursson, P. & Karlsson, J. Correlation between oral drug absorption in humans and apparent drug permeability coefficients in humans and apparent drug permeability coefficients in human intestinal epithelial (Caco-2) cells. Biochem. Biophys. Res. Commun. 175, 880–885 (1991).

    Article  CAS  Google Scholar 

  6. Taylor, E.W., Gibbons, J.A. & Braeckman, R.A. Intestinal absorption screening of mixtures from combinatorial libraries in the Caco-2 model. Pharm. Res. 14, 572–577 (1997).

    Article  CAS  Google Scholar 

  7. Goodwin, J.T., Conradi, R.A., Ho, N.F.H. & Burton, P.S. Physicochemical determinants of passive membrane permeability: Role of solute hydrogen-bonding potential and volume. J. Med. Chem. 44, 3721–3729 (2001).

    Article  CAS  Google Scholar 

  8. Wang, Z., Hop, C.E.C.A., Leung, K.H. & Pang, J. Determination of in vitro permeability of drug candidates through a Caco-2 cell monolayer by liquid chromatography/tandem mass spectroscopy. J. Mass Spectrom. 35, 71–76 (2000).

    Article  CAS  Google Scholar 

  9. Fung, E.N. et al. Higher-throughput screening for Caco-2 permeability utilizing a multiple sprayer liquid chromatography/tandem mass spectrometry system. Rapid Commun. Mass Spectrom. 17, 2147–2152 (2003).

    Article  CAS  Google Scholar 

  10. Lundberg, M. & Johansson, M. Is VP22 nuclear homing an artifact? Nat. Biotechnol. 19, 713 (2001).

    Article  CAS  Google Scholar 

  11. Richard, J.P. et al. Cell-penetrating peptides: A reevaluation of the mechanism of cellular uptake. J. Biol. Chem. 278, 585–590 (2003).

    Article  CAS  Google Scholar 

  12. Belitsky, J.M., Leslie, S.J., Arora, P.S., Beerman, T.A. & Dervan, P.B. Cellular uptake of N-methylpyrrole/N-methylimidazole polyamide-dye conjugates. Bioorg. Med. Chem. 10, 3313–3318 (2002).

    Article  CAS  Google Scholar 

  13. Bertorelli, G., Bocchino, V. & Olivieri, D. Heat shock protein interactions with the glucocorticoid receptor. Pulm. Pharmacol. Ther. 11, 7–12 (1998).

    Article  CAS  Google Scholar 

  14. Pratt, W.B. & Toft, D.O. Steroid receptor interactions with heat shock protein and immunophilin chaperones. Endocr. Rev. 18, 306–360 (1997).

    CAS  PubMed  Google Scholar 

  15. Brocard, J., Feil, R., Chambon, P. & Metzger, D. A chimeric Cre recombinase inducible by synthetic, but not by natural ligands of the glucocorticoid receptor. Nucleic Acids Res. 26, 4086–4090 (1998).

    Article  CAS  Google Scholar 

  16. Braselmann, S., Graninger, P. & Busslinger, M. A selective transcriptional induction system for mammalian cells based on Gal4-estrogen receptor fusion proteins. Proc. Natl. Acad. Sci. USA 90, 1657–1661 (1993).

    Article  CAS  Google Scholar 

  17. Wang, Y., O'Malley, B.W., Jr., Tsai, S.Y. & O'Malley, B.W. A regulatory system for use in gene transfer. Proc. Natl. Acad. Sci. USA 91, 8180–8184 (1994).

    Article  CAS  Google Scholar 

  18. Rousseau, G.G. & Kirchhoff, J. 17β-Carboxamide steroids are a new class of glucocorticoid antagonists. Nature 279, 158–160 (1979).

    Article  CAS  Google Scholar 

  19. Manz, B., Grill, H-J. & Pollow, K. Steroid side-chain modification and receptor affinity: Binding of synthetic derivatives of corticoids to human spleen tumor and rat liver glucocorticoid receptors. J. Steroid Biochem. 17, 335–342 (1982).

    Article  CAS  Google Scholar 

  20. Licitra, E.J. & Liu, J.O. A three-hybrid system for detecting small ligand-protein receptor interactions. Proc. Natl. Acad. Sci. USA 93, 12817–12821 (1996).

    Article  CAS  Google Scholar 

  21. Alluri, P.G., Reddy, M.M., Bachhawat-Sikder, K., Olivos, H.J. & Kodadek, T. Isolation of protein ligands from large peptoid libraries. J. Am. Chem. Soc. 125, 13995–14004 (2003).

    Article  CAS  Google Scholar 

  22. Zuckermann, R.N. et al. Discovery of nanomolar ligands for 7-transmembrane G-protein-coupled receptors from a diverse N-(substituted)glycine peptoid library. J. Med. Chem. 37, 2678–2685 (1994).

    Article  CAS  Google Scholar 

  23. Kodadek, T. Development of protein-detecting microarrays and related devices. Trends Biochem. Sci. 27, 295–300 (2002).

    Article  CAS  Google Scholar 

  24. Ding, S. et al. Synthetic small molecules that control stem cell fate. Proc. Natl. Acad. Sci. USA 100, 7632–7637 (2003).

    Article  CAS  Google Scholar 

  25. Mayer, T.U. et al. Small molecule inhibitor of mitotic spindle bipolarity identified in a phenotype-based screen. Science 286, 971–974 (1999).

    Article  CAS  Google Scholar 

  26. Chen, S., Zhang, Q., Wu, X., Schultz, P.G. & Ding, S. Dedifferentiation of lineage-committed cells by a small molecule. J. Am. Chem. Soc. 126, 410–411 (2004).

    Article  CAS  Google Scholar 

  27. Peterson, R.T., Link, B.A., Dowling, J.E. & Schreiber, S.L. Small molecule developmental screens reveal the logic and timing of vertebrate development. Proc. Natl. Acad. Sci. USA 97, 12965–12969 (2000).

    Article  CAS  Google Scholar 

  28. Burton, P.S., Conradi, R.A., Ho, N.F.H., Hilgers, A.R. & Borchard, R.T. How structural features influence the biomembrane permeability of peptides. J. Pharm. Sci. 85, 1336–1340 (1996).

    Article  CAS  Google Scholar 

  29. Goodwin, J.T., Mao, B., Vidmar, T.J., Conradi, R.A. & Burton, P.S. Strategies toward predicting peptide cellular permeability from computed molecular descriptors. J. Pept. Res. 53, 355–369 (1999).

    Article  CAS  Google Scholar 

  30. Olivos, H.J., Alluri, P.G., Reddy, M.M., Salony, D. & Kodadek, T. Microwave-assisted solid-phase synthesis of peptoids. Org. Lett. 4, 4057–4059 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank John Shelton of the Department of Internal Medicine and Kausar Nadim of the Center for Biomedical Inventions in the UT-Southwestern Medical Center for help with the fluorescence imaging. This work was supported by grants from the National Institutes of Health (P01-DK58398) and the Welch Foundation (I-1299).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Kodadek.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Molecular structures of dexamethasone and variousderivatives used in this study. (PDF 700 kb)

Supplementary Fig. 2

Validation of the high throughput assay. (PDF 372 kb)

Supplementary Fig. 3

Evaluation of the cell permeability of the peptoids byfluorescence imaging. (PDF 608 kb)

Supplementary Table 1

Summary of the cell permeability of tetrameric peptoids with different monomer compositions in the high throughput assay. (PDF 54 kb)

Supplementary Table 2

Summary of the parameters from cell permeability and in vitro competition assay for OxDex-tetrameric peptoids carrying different net charges at neutral pH. (PDF 49 kb)

Supplementary Methods (PDF 116 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yu, P., Liu, B. & Kodadek, T. A high-throughput assay for assessing the cell permeability of combinatorial libraries. Nat Biotechnol 23, 746–751 (2005). https://doi.org/10.1038/nbt1099

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1099

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing