Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Neural network-based prediction of candidate T-cell epitopes

Abstract

Activation of T cells requires recognition by T-cell receptors of specific peptides bound to major histocompatibility complex (MHC) molecules on the surface of either antigen-presenting or target cells. These peptides, T-cell epitopes, have potential therapeutic applications, such as for use as vaccines. Their identification, however, usually requires that multiple overlapping synthetic peptides encompassing a protein antigen be assayed, which in humans, is limited by volume of donor blood. T-cell epitopes are a subset of peptides that bind to MHC molecules. We use an artificial neural network (ANN) model trained to predict peptides that bind to the MHC class II molecule HLA-DR4(*0401). Binding prediction facilitates identification of T-cell epitopes in tyrosine phosphatase IA-2, an autoantigen in DR4-associated type1 diabetes. Synthetic peptides encompassing IA-2 were tested experimentally for DR4 binding and T-cell proliferation in humans at risk for diabetes. ANN-based binding prediction was sensitive and specific, and reduced the number of peptides required for T-cell assay by more than half, with only a minor loss of epitopes. This strategy could expedite identification of candidate T-cell epitopes in diverse diseases.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. DeLisi, C. and Berzofsky, J.A. 1985. T-cell antigenic sites tend to be amphipathic structures. Proc. Natl. Acad. Sci. USA 82: 7048–7052.

    Article  CAS  Google Scholar 

  2. Rothbard, J.B. and Taylor, W.R. 1988. A sequence pattern common to T-cell epitopes. EMBO J. 7: 93–100.

    Article  CAS  Google Scholar 

  3. Hammer, J., Sturniolo, T., and Sinigaglia, F. 1997. HLA class II peptide binding specificity and autoimmunity. Adv. Immunol. 66: 67–100.

    Article  CAS  Google Scholar 

  4. Rammensee, H-G., Friede, T., and Stevanovic, S. 1995. MHC ligands and peptide motifs: first listing. Immunogenetics 4: 178–228.

    Article  Google Scholar 

  5. Raddrizzani,L., Sturniolo, T., Guenot, J., Bono, E., Gallazzi,R, Nagy, Z.A. et al. 1997. Different modes of peptide interaction enable HLA-DQ and HLA-DR molecules to bind diverse peptide repertoires. J. Immunol. 159: 703–711.

    CAS  PubMed  Google Scholar 

  6. Jardetzky, T.S., Brown, J.H., Gorga, J.C., Stern, L.J., Strominger, J.L., and Wiley, D.C. 1996. Crystallographic analysis of endogenous peptides associated with HLA-DR1 suggests a common, polyproline II-like conformation for bound peptides. Proc. Natl. Acad. Sci. USA 93: 734–738.

    Article  CAS  Google Scholar 

  7. Nigrin, A. 1993. Neural networks for pattern recognition. MIT Press, Cambridge, MA.

    Google Scholar 

  8. Beale, R. and Jackson, T. 1990. Neural computing: an introduction. Hilger, Bristol, UK.

    Google Scholar 

  9. Weiss, S.M. and Kulikowski, C.A. 1991. Computer systems that learn. Morgan Kaufman Publishers, San Mateo, CA.

    Google Scholar 

  10. Brusic, V., Rudy, G., and Harrison, L.C. 1994. Prediction of MHC binding peptides using artificial networks, pp.253–260 in: Complex systems: mechanism of adaptation. Stonier, R. and Yu, X.H. (eds.). IOS Press, Amsterdam, The Netherlands.

    Google Scholar 

  11. Brusic, V., Rudy, G., Honeyman, M.C., Hammer, J., and Harrison, L.C. 1998. Prediction of MHC class-II binding peptides using an evolutionary algorithm and artificial neural network. Bioinformatics 14: 121–130.

    Article  CAS  Google Scholar 

  12. Zhang, B., Lan, M.S., and Notkins, A.L. 1997. Autoantibodies to IA-2 in IDDM: location of major antigenic determinants. Diabetes. 46: 40–43.

    Article  Google Scholar 

  13. Taid, BD. and Harrison, L.C. 1991. Overview: the major histocompatibility complex and insulin-dependent diabetes mellitus, in: Genetics of diabetes part I. Baillere's Clin. Endocrinol. Metab. 5: 11–228.

    Google Scholar 

  14. Nepom, G.T., Byers, P., Seyfried, C, Healey, L.A., Wilske, K.R., Stage, D. et al. 1989. HLA genes associated with rheumatoid arthritis. Arthritis Rheum. 32: 15–21.

    Article  CAS  Google Scholar 

  15. Hammer, J., Bono, E., Gallazzi, F., Bellunis, C., Nagy, Z., and Sinigaglia, F. 1994. Precise prediction of MHC class II-peptide interaction based on peptide side-chain scanning. J. Exp. Med. 180: 2353–2358.

    Article  CAS  Google Scholar 

  16. Reece, J.C., Geysen, H.M., and Rodda, S.J. 1993. Mapping the major human T helper epitopes of tetanus toxin. J. Immunol. 151: 6175–6184.

    CAS  PubMed  Google Scholar 

  17. Pette, M., Fujita, K., Wilkinson, D., Altmann, D.M., Trowsdale, J., Giegerich, G. et al. 1990. Myelin autoreactivity in multiple sclerosis: recognition of myelin basic protein in the context of HLA-DR2 products by T lymphocytes of multiple sclerosis patients and healthy donors. Proc. Natl. Acad. Sci. USA 87: 7968–7972.

    Article  CAS  Google Scholar 

  18. Salvetti, M., Jung, S., Chang, S.F., Will, H., Schalke, B.C., and Wekerle, H. 1991. Acetylcholine receptor-specific T lymphocyte clones in the normal human immune repertoire: target epilopes, HLA restriction and membrane phenotypes. Ann. Neurol. 29: 508–516.

    Article  CAS  Google Scholar 

  19. Ashton-Rickardt, P.G. and Tonegawa, S. 1994. A differential-avidity model for T-cell selection. Immunol. Today 15: 362–366.

    Article  CAS  Google Scholar 

  20. Miyata, Y. 1991. A user's guide to PlaNet 5.6. Computer Science Dept, University of Colorado, Boulder, CO..

    Google Scholar 

  21. Brusic, V., Rudy, G., Kyne, A.R., and Harrison, L.C. 1997. MHCPEP, a database of MHC-binding peptides: update 1996. Nucleic Acids Res. 25: 269–271.

    Article  CAS  Google Scholar 

  22. Rumelhart, D.E., Hinton, G.E., and Williams, R.J. 1986. Learning representations by back-propagating errors. Nature 323: 533–536.(1986).

    Article  Google Scholar 

  23. Zurada, J.M. 1992. pp 41–42 in Introduction to artificial neural systems. West Publishing Company, St. Paul, MN..

    Google Scholar 

  24. Forrest, S. 1993. Genetic algorithms: principles of natural selection applied to computation. Science 261: 872–878.

    Article  CAS  Google Scholar 

  25. Sinigaglia R, Romagnoli, P., Guttinger, M., Takacs, B., and Pink, J.R.L. 1991. Selection of T-cell epitopes and vaccine engineering. Methods Enzymol. 203: 370–386.

    Article  CAS  Google Scholar 

  26. Hammer, J., Gallazzi, F., Bono, E., Karr, R., Guenot, J.M., Valsasnini, P. et al. 1995. Peptide binding specificity of HLA-DR4 molecules: correlation with rheumatoid arthritis association. J. Exp. Med. 181: 1847–1855.

    Article  CAS  Google Scholar 

  27. Harrison, L.C., Honeyman, M.C., Trembleau, S., Gregori, S., Gallazzi F, Augstein, P. et al 1997. A peptide-binding motif for I-Ag7, the class II major histocompatibility complex (MHC) molecule of NOD and Biozzi AB/H mice. J. Exp. Med. 185: 1013–1021.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Honeyman, M., Brusic, V., Stone, N. et al. Neural network-based prediction of candidate T-cell epitopes. Nat Biotechnol 16, 966–969 (1998). https://doi.org/10.1038/nbt1098-966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1098-966

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing