Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments

Abstract

Thousands of waste sites around the world contain mixtures of toxic chlorinated solvents, hydrocarbon solvents, and radionuclides. Because of the inherent danger and expense of cleaning up such wastes by physicochemical methods, other methods are being pursued for cleanup of those sites. One alternative is to engineer radiation-resistant microbes that degrade or transform such wastes to less hazardous mixtures. We describe the construction and characterization of recombinant Deinococcus radiodurans, the most radiation-resistant organism known, expressing toluene dioxygenase (TDO). Cloning of the tod genes (which encode the multicomponent TDO) into the chromosome of this bacterium imparted to the strain the ability to oxidize toluene, chlorobenzene, 3,4-dichloro-1-butene, and indole. The recombinant strain was capable of growth and functional synthesis of TDO in the highly irradiating environment (60 Gy/h) of a 137Cs irradiator, where 5×108 cells/ml degraded 125 nmol/ml of chlorobenzene in 150 min. D. radiodurans strains were also tolerant to the solvent effects of toluene and trichloroethylene at levels exceeding those of many radioactive waste sites. These data support the prospective use of engineered D. radiodurans for bioremediation of mixed wastes containing both radionuclides and organic solvents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. McKlveen, J.W. 1990. Current status of nuclear power in the United States and around the world. Australas Phys. Eng. Sci. Med. 13: 101–109.

    CAS  PubMed  Google Scholar 

  2. Macilwain, C. 1996. Science seeks weapons clean-up role. Nature 383: 375–379.

    CAS  Google Scholar 

  3. Riley, R.G., Zachara, J.M., & Wobber, F.J. 1992. Chemical contaminants on DOE lands and selection of contaminant mixtures for subsurface science research. US Dept. of Energy. Subsurface Science Program, Washington, DC.

  4. US General Accounting Office 1988. Nuclear waste problems associated with DOE's inactive waste sites. GAGO/RCED-88-229FS, US Government Accounting Office, Washington, DC.

  5. http://www.em.doe.gov/bemr96. The 1996 Baseline Environmental Management Report.

  6. Diels, L., Dong, Q., Van der Lelie, D., Baeyens W., and Mergeay, M. 1995. The czc operon of Alcaligenes eutrophus CH34: from resistance mechanism to the removal of heavy metals. J. Ind. Microbiol. 14: 142–153.

    Article  CAS  Google Scholar 

  7. Leisinger, T., Cook, A.M., Hutter, R., and Nuesch, J. (eds.). 1981. Microbial degradation of xenobiotic and recalcitrant compounds. Academic Press, New York.

    Google Scholar 

  8. Li, S. and Wackett L.P. 1992. Trichloroethylene oxidation by toluene dioxygenase. Biochem. Biophys. Res. Commun. 58: 2820–2826.

    Google Scholar 

  9. Lovely, D.R. 1995. Bioremediation of organic and metal contaminants with dissimilatory metal reduction. J. Ind. Microbiol. 14: 85–93.

    Article  Google Scholar 

  10. Nies,D.H. and Silver, S. 1994. Ion efflux systems involved in bacterial metal resistances. J. Ind. Microbiol. 14: 186–199.

    Article  Google Scholar 

  11. Wackett, L.P., Sadowsky, M.J., Newman, L.M., Hur, H.-G. and Li, S. Metabolism of polyhalogenated compounds by a genetically engineered bacterium. Nature 368: 627–629.

    Article  CAS  Google Scholar 

  12. Zylstra, G.J. and Gibson, D.T. 1989. Toluene degradation by Pseudomonas putida F1: Nucleotide sequence of the todC1C2BADE genes and their expression. J. Biol. Chem. 264: 14940–14946.

    CAS  PubMed  Google Scholar 

  13. Thornley, M.J. 1963. Radiation resistance among bacteria. J. Appl. Bacteriol. 26: 334–345.

    Article  Google Scholar 

  14. Brooks, B.W., Murray, R.G.E., Johnson, J.L., Stackebrandt, E., Woese, C.R. and Fox, G.E. 1980. Red-pigmented micrococci: a basis for taxonomy. Int. J. Syst. Bacteriol. 30: 627–646.

    Article  Google Scholar 

  15. Moseley, B.E.B. and Evans, D.M. 1983. Isolation and properties of strains of Micrococcus (Deinococcus) radiodurans unable to excise ultraviolet light-induced pyrimidine dimers from DNA: evidence for two excision pathways. J. Gen Microbiol. 129: 2437–2445.

    CAS  PubMed  Google Scholar 

  16. Murray, R.G.E. 1992. The family Deinococcaceae, pp. 3732–3744, in The prokaryotes. Balows, A., Truper, H.G., Dworkin, M., Harder, W., and Schleifer, K.-H. (eds.) Vol. 4, 2nd ed. Springer-Verlag, New York.

    Chapter  Google Scholar 

  17. Mattimore, V. and Battista, J.R. 1996. Radioresistance of Deinococcus radiodurans: functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J. Bacteriol. 177: 5232–5237.

    Article  Google Scholar 

  18. Daly, M.J. Ouyang, L., and Minton, K.W. 1994. In vivo damage and recA-dependent repair of plasmid and chromosomal DNA in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176: 3508–3517 (1994)

    Article  CAS  Google Scholar 

  19. Krasin, F. and Hutchinson, F. 1977. Repair of DNA double-strand breaks in Escherichia coli, which requires recA function and the presence of a duplicate chromosome. J. Mol. Biol. 116: 81–98.

    Article  CAS  Google Scholar 

  20. Daly, M.J. and Minton, K.W. 1995. Interchromosomal recombination in the extremely radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 176: 7506–7515.

    Article  Google Scholar 

  21. Daly, M.J. and Minton, K.W. 1996. An alternative pathway for recombination of chromosomal fragments precedes recA-dependent recombination in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 178: 4461–4471.

    Article  CAS  Google Scholar 

  22. Smith, M.D., Lennon, E., McNeil,L.B., and Minton, K.W. 1988. Duplication insertion of drug resistance determinants in the radioresistant bacterium Deinococcus radiodurans. J. Bacteriol. 170: 2126–2135.

    Article  CAS  Google Scholar 

  23. Carroll, J.D., Daly, M.J. and Minton, K.W. 1996. Expression of recA in Deinococcus radiodurans. J. Bacteriol. 178: 130–135.

    Article  CAS  Google Scholar 

  24. Daly, M.J. and Minton, K.W. 1997. Recombination between a resident plasmid and the chromosome following irradiation of the radioresistant bacterium Deinococcus radiodurans. Gene 187: 225–229.

    Article  CAS  Google Scholar 

  25. Minton, K.W. 1994. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13: 9–15.

    Article  CAS  Google Scholar 

  26. Minton, K.W. 196. DNA repair in the extremely radioresistant bacterium Deinococcus radiodurans. Mol. Microbiol. 13: 9–15.

    Article  Google Scholar 

  27. http://www.tigr.org/tigr_home/index.html. The Institute for Genomic Research

  28. Wackett, L.P. 1990. Toluene dioxygenase. Methods Enzymol. 188: 39–45.

    Article  CAS  Google Scholar 

  29. ftp://ftp.tigr.org/pub/dataALradiodurans. D. radiodurans sequence.

  30. Ensley, B.D., Ratzkin, B.J., Osslund, T.D., Simpson, M.J., Wackett, L.P., and Gibson, D.T. 1983. Expression of the naphthalene oxidation genes in Escherichia coli results in the biosynthesis of indigo. Science 222: 167–169.

    Article  CAS  Google Scholar 

  31. Wackett, L.P. and Householder, S.R. 1989. Toxicitiy of trichloroethylene to Pseudomonas putida F1 is mediated by toluene dioxygenase. Appl. Environ. Microbiol. 55: 2723–2725.

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Thompson, B.G. and Murray, R.G.E. 1982. The fenestrated peptidoglycan layer of Deinococcus radiodurans. Can. J. Microbiol. 28: 522–525.

    Article  CAS  Google Scholar 

  33. Thompson, B.G. and Murray, R.G.E. 1982 The association of the surface array and the outer membrane of Deinococcus radiodurans. Can J. Microbiol. 28: 1081–1088.

    Article  CAS  Google Scholar 

  34. de Smet,M.J., Kingma, J., and Witholt, B. 1978. The effect of toluene on the structure and permeability of the outer and cytoplasmic membranes of Escherichia coli. Biochem. Biophys. Act. 506: 64–80.

    Article  CAS  Google Scholar 

  35. Sikkema, J., de Bont, J.A., and Poolman, B. 1995. Mechanisms of membrane toxicity of hydrocarbons. Microbiol. Rev. 59: 201–222.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Lange, C.C. and Wackett, L.P. 1997. Oxidation of aliphatic olefins by toluene dioxygenase: enzyme rates and product identification. J. Bacteriol. 179: 3858–3865.

    Article  CAS  Google Scholar 

  37. Ziffer, H., Kabuto, K., Gibson, D.T., Kobal, V.M. and Jerina, D.M. The absolute sterochemistry of several cfe-dihydrodiols microbially produced from substituted benzenes. Tetrahedron 33: 2491–2496.

    Article  CAS  Google Scholar 

  38. Sambrook, J., Fritsch, E.F. and Maniatis, T. 1989. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lange, C., Wackett, L., Minton, K. et al. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat Biotechnol 16, 929–933 (1998). https://doi.org/10.1038/nbt1098-929

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1098-929

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing