Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Review
  • Published:

Applications of the green fluorescent protein in cell biology and biotechnology

Abstract

The recent emergence of an autofluorescent protein, the green fluorescent protein (GFP), has opened the door for the convenient use of intact living cells and organisms as experimental systems in fields ranging from cell biology to biomedicine. We present an overview of some of the major applications of GFP, namely its use in protein tagging and in monitoring gene expression as well as its potential in a variety of biological screens.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prasher, D., Eckenrode, V., Ward, W., Prendergast, R. and Cormier, M. 1992. Primary structure of the Aequorea victoriagreen-fluorescent protein. Gene 111: 229–233.

    Article  CAS  PubMed  Google Scholar 

  2. Prasher, D. 1995. Using GFP to see the light. Trends Genet 11: 320–323.

    Article  CAS  PubMed  Google Scholar 

  3. Chalfie, M., Tu, Y., Euskirchen, G., Ward, W. and Prasher, D. 1994. Green fluorescent protein as a marker for gene expression. Science 263: 802–805.

    Article  CAS  PubMed  Google Scholar 

  4. Ormö, M., Cubitt, A., Kallio, K., Gross, L., Tsien, R. and Remington, S. 1996. Crystal structure of the Aeguorea victoria green fluorescent protein. Science 273: 1392–1395.

    Article  PubMed  Google Scholar 

  5. Yang, F., Moss, L.G., and Phillips, G.N. 1996. The molecular structure of green fluorescent protein. Nature Biotechnology 14: 1246–1251.

    Article  CAS  PubMed  Google Scholar 

  6. Wachter, R.M., King, B.A., Heim, R., Kallio, K., Tsien, R.Y., Boxer, S.G. et al. 1997. Crystal structure and photodynamic behavior of the blue emission variant Y66H/Y145F of green fluorescent protein. Biochemistry 36: 9759–9765.

    Article  CAS  PubMed  Google Scholar 

  7. Heim, R., Prasher, D. and Tsien, R. 1994. Wavelength mutations and posttranslational autoxidation of green fluorescent protein. Proc. Natl. Acad. Sci. USA 91: 12501–12504.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Heim, R. and Tsien, R. 1996. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6: 178–182.

    Article  CAS  PubMed  Google Scholar 

  9. Cormack, B., Valdivia, R. and Falkow, S. 1996. FACS-optimized mutants of the green fluorescent protein (GFP). Gene 173: 33–38.

    Article  CAS  PubMed  Google Scholar 

  10. Palm, G.J., Zdanov, A., Gaitanaris, G.A., Stauber, R., Pavlakis, G.N. and Wlodawer, A. 1997. The structural basis for spectral variations in green fluorescent protein. Nature Struct. Biol. 4: 361–365.

    Article  CAS  PubMed  Google Scholar 

  11. Siemering, K., Golbik, R., Sever, R. and Haseloff, J. 1996. Mutations that suppress the thermosensitivity of green fluorescent protein. Curr. Biol. 6: 1653–1663.

    Article  CAS  PubMed  Google Scholar 

  12. Zolotukhin, S., Potter, M., Hauswirth, W., Guy, J. and Muzyczka, N. 1996. A humanized green fluorescent protein cDNA adapted for high-level expression in mammalian cells.J. Virol. 70: 4646–4654.

    CAS  PubMed  PubMed Central  Google Scholar 

  13. Zemicka-Goetz, M., Pines, J., McLean Hunter, S., Dixon, J., Siemering, K. Haseloff, J. et al. 1997. Following cell fate in the living mouse embryo.Development 124: 1133–1137.

    Google Scholar 

  14. Zernicka-Goetz, M., Pines, J., Ryan, K., Siemenng, K., Haseloff, J., Evans, M. et al. 1996. An indelible lineage marker for Xenopus using a mutated green fluorescent protein. Development 122: 3719–3724.

    CAS  PubMed  Google Scholar 

  15. Kahana, J. and Silver, P. 1996. Use of the A. victoria green fluorescent protein to study protein dynamics in vivo. Cur. Prof. Mol. Biol. 9.7.22–9.7.28.

  16. Cormack, B., Bertram, G., Egerton, M., Gow, N., Falkow, S. and Brown, A. 1997. Yeast-enhanced green fluorescent protein (yEGFP)a reporter of gene expression in Candida albicans. Microbiology 143 (Pt 2):303–311.

    CAS  PubMed  Google Scholar 

  17. Chiu, W.t Niwa, Y., Zeng, W., Hirano, T, Kobayashi, H. and Sheen, J. 1996. Engineered GFP as a vital reporter in plants. Curr. Biol. 6: 325–330.

    Article  CAS  PubMed  Google Scholar 

  18. Haseloff, J., Siemenng, K., Prasher, D. and Hodge, S. 1997. Removal of a cryptic intron and subcellular localization of green fluorescent protein are required to mark transgenic Arabidopsis plants brightly. Proc. Natl. Acad. Sci. USA 94: 2122–2127.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Wang, S. and Hazelrigg, T. 1994. Implications for bed mRNA localization from spatial distribution of exu protein in Drosophila oogenesis. Nature 369: 400–403.

    CAS  PubMed  Google Scholar 

  20. Cole, N., Smith, C., Sciaky, N., Teresaki, M., Edidin, M. and Lippmcott-Schwartz, J. 1996. Diffusional mobility of Golgi proteins in membranes of living cells. Science 273: 797–801.

    Article  CAS  PubMed  Google Scholar 

  21. Shelby, R., Hahn, K., and Sullivan, K. 1996. Dynamic elastic behavior of alpha-satellite DNA domains visualized in situ in living human cells. J. Cell Biol. 135: 545–557.

    Article  CAS  PubMed  Google Scholar 

  22. Kahana, J., Schnapp, B., and Silver, P. 1995.Kinetics of spindle pole body separation in budding yeast. Proc. Natl. Acad. Sci. USA 92: 9707–9711.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Straight, A.F., Marshall, W.F., Sedat, J.W. and Murray, A.W. 1997. Mitosis in living budding yeast: anaphase A but no metaphase plate. Science 277: 574–578.

    Article  CAS  PubMed  Google Scholar 

  24. Olson, K., Mclntosh, J. and Olmsted, J. 1995. Analysis of MAP 4 function in living cells using green fluorescent protein (GFP) chimeras. J. Cell Biol. 130: 639–650.

    Article  CAS  PubMed  Google Scholar 

  25. Lee, M.S., Henry, M. and Silver, P.A. 1996. A protein that shuttles between the nucleus and the cytoplasm is an important mediator of RNA export. Genes and Dev. 10: 1233–1246.

    Article  CAS  PubMed  Google Scholar 

  26. Wacker, I., Kaether, C., Kromer, A., Migala. A., Aimers, W. and Gerdes, H.H. 1997. Microtubule-dependent transport of secretory vesicles visualized in real time with a GFP-tagged secretory protein.J. Cell Set. 110: 1453–1463.

    CAS  Google Scholar 

  27. Kaether, C. and Gerdes, H. 1995. Visualization of protein transport along the secretory pathway using green fluorescent protein. FEBS Letters 369: 267–271.

    Article  CAS  PubMed  Google Scholar 

  28. Misteli, T., Caceres, J.F. and Spector, D.L. 1997. The dynamics of a pre-mRNA splicing factor in living cells. Nature 387: 523–527.

    Article  CAS  PubMed  Google Scholar 

  29. Robinett, C., Straight, A., Li, G. Willhelm, C., Sudlow, G., Murray, A., et al. 1996. In vivo localization of DNA sequences and visualization of large-scale chromatin organization using lac operator/repressor recognition. J. Cell Biol. 135: 1685–1700.

    Article  CAS  PubMed  Google Scholar 

  30. Straight, A., Belrnont, A., Robinett, C., and Murray, A. 1996. GFP tagging of budding yeast chromosomes reveals that protein-protein interactions can mediate sister chromatid cohesion. Curr. Biol. 6: 1599–1608.

    Article  CAS  PubMed  Google Scholar 

  31. Webb, C., Teleman, A., Gordon, S., Straight, A., Belmont, A., Lm, D. et al. 1997. Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulatmg cells of 8. subtilis. Cell 88: 667–674.

    Article  CAS  PubMed  Google Scholar 

  32. Subramanian, S. and Srienc, F. 1996. Quantitative analysis of transient gene expression in mammalian cells using the green fluorescent protein. J. Biotechnol. 49: 137–151.

    Article  CAS  PubMed  Google Scholar 

  33. Peel, A.L. Zolotukhm, S., Schrimsher, G.W., Muzyczka, N. and Reier, R.J. 1997. Efficient transduction of green fluorescent protein in spinal cord neurons using adeno-associated virus vectors containing cell type-specific promoters. Gene Ther. 4: 16–24.

    Article  CAS  PubMed  Google Scholar 

  34. Phillips, M.I., Mohuczy-Dommiak, D., Coffey, M., Galh, S.M., Kimura, B., Wu, P. et al. 1997. Prolonged reduction of high blood pressure with an in vivo, non-pathogenic, adeno-associated viral vector delivery of AT1-R mRNA antisense. Hypertension 29: 374–380.

    Article  CAS  PubMed  Google Scholar 

  35. Wilson, L.E., Wilkinson, N., Marlow, S.A., Possee, R.D. and King, L.A 1997. Identification of recombmant baculoviruses using green fluorescent protein as a selectable marker. Biotechniques 22: 674–676.

    Article  CAS  PubMed  Google Scholar 

  36. Takada, T., lida, K., Awaji, T., Itoh, K., Takahashi, R., Shibui, A., et al. 1997. Selective production of transgenic mice using green fluorescent protein. Nature Biotechnology 15: 458–461.

    Article  CAS  PubMed  Google Scholar 

  37. Okabe, M., Ikawa, M., Kominami, K., Nakanishi, T. and Nishimune, Y. 1997. Green mice as a source of ubiquitous green cells. FEBS Letters 407: 313–319.

    Article  CAS  PubMed  Google Scholar 

  38. Chishima, T., Miyagi, Y. Wang, X., Yamaoka, H., Shirnada, H., Moossa, A.R. et al. 1997. Cancer invasion and micrornetastasis visualized in live tissue by green fluorescent protein expression. Cancer Research 57: 2042–2047.

    CAS  PubMed  Google Scholar 

  39. Sawin, K. and Nurse, P. 1996. Identification of fission yeast nuclear markers using random polypeptide fusions with green fluorescent protein. Proc. Natl. Acad. Sci. USA 93: 15146–15151.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dell'Arciprete, R., Stella, M., Fornaro, M., Ciccocioppo, R., Capri, M., Naglien, A., et al. 1996. High-efficiency expression gene cloning by flow cytometry. J. Histochem. Cyiochem. 44: 629–640.

    Article  CAS  Google Scholar 

  41. Dorsky, D., Wells, M., and Harrmgton, R. 1996. Detection of HIV-1 infection with a green fluorescent protein reporter system. J. Acquir. Immune Defic. Syndr. Hum. Retrovirol. 13: 308–313.

    Article  CAS  PubMed  Google Scholar 

  42. Gervaix, A., West, D., Leoni L.M., Richman, D.D., Wong-Staal, and Corbeil, J. 1997. A new reporter cell line to monitor HIV infection and drug susceptibility in vitro. Proc. Natl. Acad. Sci. USA 94: 4653–4658.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Htun, H., Barsony, J., Renyi, I., Gould, D., and Hager, G 1996. Visualization of glu-cocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. Proc. Natl. Acad. Sci. USA 93: 4845–4850.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  44. Romoser, V.A., Hmkle, P.M. and Persechmi, A. 1997. Detection in living cells of Ca2+-dependent changes in the fluorescence emission of an indicator composed of two green fluorescent protein variants linked by a calmodulin-binding sequence. J. Biol. Chem. 272: 13270–13274.

    Article  CAS  PubMed  Google Scholar 

  45. Connolly, J.B., Roberts, I.J., Armstrong, J.D., Kaiser, K., Forte, M., Tully, T., et al. 1996. Associative learning disrupted by impaired Gs signaling in Drosophila mushroom bodies. Science 274: 2104–2107.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Misteli, T., Spector, D. Applications of the green fluorescent protein in cell biology and biotechnology. Nat Biotechnol 15, 961–964 (1997). https://doi.org/10.1038/nbt1097-961

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1097-961

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing