Research Article | Published:

Oligonucleotide ligation assay (OLA) for the diagnosis of familial hypercholesterolemia

Nature Biotechnologyvolume 14pages12791282 (1996) | Download Citation

Subjects

Abstract

More than half of all deaths in Western society are related to arteriosclerotic cardiovascular diseases. Inherited disturbances in the low-density–lipoprotein (LDL) receptor and similar lipid-related defects account for the majority of these deaths. Testing procedures thus far rely on total cholesterol, LDL cholesterol, high-density–lipoprotein cholesterol, and triglyceride determinations. These tests are not able to provide any genetic information. We have developed an Oligonucleotide ligation assay (OLA) that enables us to screen for high-risk individuals by testing for 19 common mutations in the LDL receptor and the apolipoprotein B genes using an automated genotyping-based two-step protocol. The novel OLA uses oligomeric pentaethyleneoxide mobility modifiers. The automated test will be useful in screening large populations for genetic data to distinguish relative from absolute risk, as well as for cost-effective familial analysis.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Kannel, W.B., Castelli, W.P., Gordon, T., and McNamara, P.M. 1971. Serum cholesterol, lipoproteins, and the risk of coronary heart disease. Ann. Intern. Med. 74: 1–12.

  2. 2

    Scandinavian Simvastatin Survival Study Group. 1994. Randomised trial of cholesterol lowering in 4444 patients with coronary heart disease: the Scandinavian Simvastatin Survival Study (4S). Lancet 344: 1383–1389.

  3. 3

    Shepherd, J., Cobbe, S.M., Ford, I., Isles, C.G., Lorimer, A.R., Macfarlane, P.W., et al. 1996. Prevention of coronary heart disease with pravastatin in men with hyper-cholesterolemia. N. Engl. J. Med. 333: 1301–1307.

  4. 4

    Sacks, P.M., Rouleau, J.-L., Moye, L.A., Pfeffer, M.A., Warnica, J.W., Arnold, J.M.O., et al. 1995. Baseline characteristics in the cholesterol and recurrent events (CARE) trial of secondary prevention in patients with average serum cholesterol values. Am. J. Cardiol. 75: 621–623.

  5. 5

    Haq, I.U., Jackson, P.R., Yeo, W.W., and Ramsay, L.E. 1995. Sheffield risk and treatment table for cholesterol lowering for primary prevention of coronary heart disease. Lancet 346: 1467–1471.

  6. 6

    Goldstein, J.L., Schrott, H.G., Hazzard, W.R., Bierman, E.L., and Motulsky, A.G. 1973. Hyperlipidemia in coronary heart disease II. Genetic analysis of lipid levels in 176 families and delineation of a new inherited disorder, combined hyperlipidemia. J. Clin. Invest. 52: 1544–1568.

  7. 7

    Hobbs, H.H., Brown, M.S., and Goldstein, J.L. 1992. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia. Hum. Mutat. 1: 445–466.

  8. 8

    Innerarity, T.L., Mahley, R.W., Weisgraber, K.H., Bersot, T.P., Krauss, R.M., Vega, G.L., et al. 1990. Familial defective apoliporotein B-100: a mutation of apolipoprotein B that causes hypercholesterolemia. J. Lip. Res. 31: 1337–1349.

  9. 9

    Schuster, H., Keller, C., Wolfram, G., and Zöllner, N. 1995. Ten LDL receptor mutants explain one third of familial hypercholesterolemia in a German sample. Arterioscler. Thromb. Vase. Biol. 15: 2176–2189.

  10. 10

    Schuster, H., Rauh, G., Kormann, B., Hepp, T., Humphries, S., et al. 1990. Familial defective apolipoprotein B-100: Comparison with familial hypercholesterolemia in 18 cases detected in Munich. Arterioscler. Thromb. Vase. Biol. 10: 577–581.

  11. 11

    Barany, F. 1991. Genetic disease detection and DNA amplification using cloned thermostable ligase. Proc. Natl. Acad. Sci. USA 88: 189–193.

  12. 12

    Nickerson, D.A., Kaiser, R., Lappin, S., Stewart, J., Hood, L., and Landegren, U. 1990. Automated DNA diagnostics using an ELISA-based oligonucleotide ligation assay. Proc. Natl. Acad. Sci. USA 87: 8923–8927.

  13. 13

    Delahunty, C.M., Ankener, W., Brainerd, S., Nickerson, D.A., and Mononen, I.T. 1995. Finnish-type aspartylglucosaminuria detected by oligonucleotide ligation assay. Clin. Chem. 41: 59–61.

  14. 14

    Hansen, T.S., Petersen, N.E., Iitiä, A., Blaabjerg, O., Hyltoft-Petersen, P., and Hørder, M. 1995. Robust nonradioactive oligonucleotide ligation assay to detect a common point mutation in the CYP2D6 gene causing abnormal drug metabolism. Clin. Chem. 41: 413–418.

  15. 15

    Day, J.D., Speiser, P.W., White, P.C., and Barany, F. 1995. Detection of steroid 21-hydroxylase alleles using gene-specific PCR and a multiplexed ligation detection reaction. Genomics 29: 152–162.

  16. 16

    Eggerding, F.A. 1995. A one-step coupled amplification and oligonucleotide ligation procedure for multiplex genetic typing. PCR Methods Applic. 4: 337–345.

  17. 17

    Eggerding, F.A., lovannisci, D.M., Brinson, E., Grossman, P., and Winn-Deen, E.S. 1995. Fluorescence-based oligonucleotide ligation assay for analysis of cystic fibrosis transmembrane conductance regulator gene mutations. Hum. Mutat. 5: 153–165.

  18. 18

    Grossman, P.D., Bloch, W., Brinson, E., Chang, C.C., Eggerding, F.A., Fung, S., et al. 1994. High-density multiplex detection of nucleic acid sequences: oligonucleotide ligation assay and sequence-coded separation. Nucleic Acids Res. 22: 4527–4543.

  19. 19

    Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., et al. 1987. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.

  20. 20

    Livak, K.J., Flood, S.J., Marmaro, J., Giusti, W., and Deetz, K. 1995. Oligonucleotides with fluorescent dyes at opposite ends provide a quenched probe system useful for detecting PCR product and nucleic acid hybridization. PCR Methods Appl. 4: 357–362.

  21. 21

    Pyrölälä, K., De Backer, G., Graham, I., Poole-Wilson, P., and Wood, D. 1994. Prevention of coronary heart disease in clinical practice. Eur. Heart J. 15: 1300–1331.

  22. 22

    Walsh, P.S., Metzger, D.A., and Higuchi, R. 1991. Chelex 100 as a medium for simple extraction of DNA for PCR-based typing from forensic material. Biotechniques 10: 506–513.

  23. 23

    Bolla, M.K., Haddad, L., Humphries, S.E., Winder, A.F., and Day, I.N. 1995. High-throughput method for determination of apolipoprotein E genotypes with use of restriction digestion analysis by microplate array diagonal gel electrophoresis. Clin. Chem. 41: 1599–1604.

  24. 24

    Kovanen, P.T., Bilheimer, D.W., Goldstein, J.L., Jaramillo, J.J., and Brown, M.S. 1981. Regulatory role for hepatic low density lipoprotein receptors in vivo in the dog. Proc. Natl. Acad. Sci. USA 78: 1194–1198.

  25. 25

    Cload, S.T. and Schepartz, A. 1991. Polyether tethered oligonucleotide probes. J. Am. Chem. Soc. 113: 6324–6327.

  26. 26

    Levenson, C., Chang, C.-A., and Oakes, F. 1990. Oligonucleotide functionalizing reagents. US Pat. No. 4,914,210.

Download references

Author information

Author notes

  1. Herbert Schuster: Corresponding author.

Affiliations

  1. Franz Volhard Clinic at the Max Delbrück Center for Molecular Medicine, Virchow Klinikum, Humboldt University of Berlin, Germany

    • Heike Baron
    • , Atakan Aydin
    • , Sylvia Bähring
    • , Friedrich C. Luft
    •  & Herbert Schuster
  2. Applied Biosystems Division of Perkin Elmer, Foster City, CA, 94404

    • Steven Fung

Authors

  1. Search for Heike Baron in:

  2. Search for Steven Fung in:

  3. Search for Atakan Aydin in:

  4. Search for Sylvia Bähring in:

  5. Search for Friedrich C. Luft in:

  6. Search for Herbert Schuster in:

About this article

Publication history

Received

Accepted

Issue Date

DOI

https://doi.org/10.1038/nbt1096-1279

Further reading