Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Engineering human glycoprotein hormone superactive analogues

Abstract

We report the generation of superactive analogues of human glycoprotein hormones, with potential applications in thyroid and reproductive disorders. Current biological and structural data were used to rationalize mutagenesis. The 11–20 region in the α-subunit with a cluster of lysine residues forms a previously unrecognized domain critical for receptor binding and signal transduction, as well as an important motif in the evolution of glycoprotein hormone activities. The gradual elimination of basic residues in the α-subunit coincided with the evolutionary divergence of the hominids from the Old World monkeys. By selective reconstitution of certain critical residues present in homologous nonhuman hormones we have developed human thyroid stimulating hormone and chorionic gonadotropin analogues with substantial increases in receptor binding affinity and bioactivity, thus providing a paradigm for the design of novel therapeutic protein analogues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Pierce, J.G. and Parsons, T.F. 1981. Glycoprotein hormones: structure and function. Ann. Rev. Biochem. 50: 465–495.

    Article  CAS  PubMed  Google Scholar 

  2. Fontaine, Y-A. and Burzawa-Gerard, E. 1977. Esquisse de l'evolution des hormones gonadotopes et thyreotropes des vertebres. Gen. Comp. Endocrinol. 32: 341–347.

    Article  CAS  PubMed  Google Scholar 

  3. Litch, P., Papkoff, H., Farmer, S.W., Muller, Ch.H., Tsui, H.W., and Crews, D. 1977. Evolution of gonadotropin structure and function. Rec. Progr. Horm. Res. 33: 169–248.

    Google Scholar 

  4. Combarnous, Y. . 1992. Molecular basis of the specificity of binding of glycoprotein hormones to their receptors. Endocrine Rev. 13: 670–691.

    Article  CAS  Google Scholar 

  5. Yamazaki, K., Sato, K., Shizume, K., Ito, Y., Obara, T., et al. 1995. Potent thyrotropic activity of human chorionic gonadotropin variants in terms of 125I incorporation and de novo synthesized thyroid hormone release in human thyroid follicles. J. Clin. Endocrinol. Metab. 80: 473–479.

    CAS  PubMed  Google Scholar 

  6. Fares, F.A., Suganuma, N., Nishimori, K., LaPolt, P.S., Hsueh, A.J.W. and Boime, I. 1992 Design of a long-acting follitropin agonist by fusing the C-terminal sequence of the chorionic gonadotropin β subunit to the follitropin β subunit. Proc. Natl. Acad Sci. USA 89: 4304–4308.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. LaPolt, P.S., Nishimori, K., Fares, F.A., Perlas, E., Boime, I., and Hsueh, A.J.W. 1992. Enhanced stimulation of follicle maturation and ovulatory potential by long acting follicle-stimulating hormone agonists with extended carboxyl-terminal peptides. Endocrinology 131: 2514–2520.

    Article  CAS  PubMed  Google Scholar 

  8. Sugahara, T., Pixley, M.R., Minami, S., Perlas, E., Ben-Menahem, D., Hsueh, A.J.W. et al. 1995. Biosynthesis of a biologically active single peptide chain containing the common α and chorionic gonadotropin β subunits in tandem. Proc. Natl. Acad Sci. USA 92: 2041–2045.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Joshi, L., Murata, Y., Wondisford, F.E., Szkudlinski, M.W., Desai, R., and Weintraub, B.D. 1995. Recombinant thyrotropin containing a β-subunit chimera with the human chorionic gonadotropin-β carboxy terminus is biologically active, with a prolonged plasma half-life: role of carbohydrate in bioactivity and metabolic clearance. Endocrinology 136: 3839–3848.

    Article  CAS  PubMed  Google Scholar 

  10. Szkudlinski, M.W., Thotakura, N.R. and Weintraub, B.D. 1995. Subunit-specific functions of N-linked oligosaccharides in human thyrotropin: role of terminal residues of α-subunit and β-subunit oligosaccharides in metabolic clearance and bioactivity. Proc. Natl. Acad. Sci. USA 92: 9062–9066.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Lapthorn, A.J., Harris, D.C., Littlejohn, A., Lustbader, J.W., Canfield, R.E., Machin, K.J., Morgan, F.J. and Isaacs, N.W. 1994. Crystal structure of human chorionic gonadotropin. Nature 369: 455–461.

    Article  CAS  PubMed  Google Scholar 

  12. Wu, H., Lustbader, J.W., Liu, Y., Canfield, R.E., and Hendrickson, W.A 1994. Structure of human chorionic gonadotropin at 2.6 A resolution from MAD analysis of the selenomethionyl protein. Structure 2: 545–558.

    Article  CAS  PubMed  Google Scholar 

  13. Strader, C.D., Sigal, I.S. and Dixon, R.A.F. 1989. Structural basis of β-adrenergic receptor function. FASEB J. 3: 1825–1832.

    Article  CAS  PubMed  Google Scholar 

  14. Ostrowski, J., Kjelsberg, M.A., Caron, M.G. and Lefkowitz, R.J. 1992. Mutagenesis of the β2-adrenergic receptor: how structure elucidates function. Annu. Rev. Pharmacol. Toxicol. 32: 167–183.

    Article  CAS  PubMed  Google Scholar 

  15. Ji, I., Zeng H., and Ji, T.H. 1993. Receptor activation of and sgnal generation by the lutropin/choriogonadotropin receptor. J. Biol. Chem. 268: 22971–22974.

    CAS  PubMed  Google Scholar 

  16. Rao, V.R., Cohen, G.B., and Oprian, D.D. 1994. Rhodopsin mutation G90D and a molecular mechanism for congenital blindness. Nature 367: 639–641.

    Article  CAS  PubMed  Google Scholar 

  17. Golos, T.G., Durning, M. and Fisher, J.M. 1991. Molecular cloning of the Rhesus glycoprotein hormone α-subunit gene. DNA Cell. Biol. 10: 367–380.

    Article  CAS  PubMed  Google Scholar 

  18. Stanton, P.G. and Hearn, M.T.W. 1987. The iodination sites of bovine thyrotropin. J. Biol. Chem. 262: 1623–1632.

    CAS  PubMed  Google Scholar 

  19. Dimhofer, S., Lechner, O., Madersbacher, S., Kieber, R., de Leeuw, R., Wick, G., et al. 1994. Free α-subunit of human chorionic gonadotrophin: molecular basis of immunologically and biologically active domains. J. Endocrine*. 140: 145–154.

    Article  Google Scholar 

  20. Liu, W.K., Yang, K.P., Nakagawa Y., and Ward, D.N. 1974. The role of the amino group in the subunit association and receptor site interaction for ovine luteinizing hormone as studied by acylation. J. Biol. Chem. 249: 5544–5550.

    CAS  PubMed  Google Scholar 

  21. Yadav, S.P., Brew, K., Majercik, M.H. and Puett, D. 1994. Holoprotein formation of human chorionic gonadotropin: differential trace labeling with acetic anhydride. Mol. Endocrinol. 8: 1547–1558.

    CAS  PubMed  Google Scholar 

  22. Grossmann, M., Szkudlinski, M.W., Zeng, H., Kraiem, Z., Ji, I., Tropea, J.E. et al. 1995. Role of the carboxy-terminal residues of the α-subunit in the expression and bioactivity of human thyroid-stimulating hormone. Mol. Endocrinol. 9: 948–958.

    CAS  PubMed  Google Scholar 

  23. Moyle, W.R., Campbell, R.K., Venkateswara Rao, S.N., Ayad, N.G., Bernard, M.R., Han, Y., et al. 1995. Model of human chorionic gonadotropin and lutropin receptor interaction that explains signal transduction of the glycoprotein hormones. J. Biol. Chem. 270: 20020–20031.

    Article  CAS  PubMed  Google Scholar 

  24. Jiang, X., Dreano, M., Buckler, D.R., Cheng, S., Ythier, A., Wu, H., et al. 1995. Structural predictions for the ligand-binding region of glycoprotein hormone receptors and the nature of hormone-receptor interactions. Structure 3: 1341–1353.

    Article  CAS  PubMed  Google Scholar 

  25. Kajava, A.V., Vassart, G. and Wodak, S.J. 1995. Modeling of the three-dimensional structure of proteins with the typical leucine-rich repeats. Structure 3: 867–877.

    Article  CAS  PubMed  Google Scholar 

  26. Ryden, M., Murray-Rust, J., Glass, D., LLag L.L., Trupp, M., Yancopoulos, G.D., et al. 1995. Functional analysis of mutant neurotrophins deficient in low affinity binding reveals a role for p75LNGFR in NT-4 signalling. EMBO J. 14: 1979–1990.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Griffith, D.L., Keck, P.C., Sampath, T., Rueger, D.C., and Carlson, W.D. 1996. Three-dimensional structure of recombinant human osteogenic protein 1: structural paradigm for the transforming growth factor 13 superfamily. Proc. Natl. Acad. Sci. USA 93: 878–883.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Meier, C.A., Braverman, L.E., Ebner, S.A., Veronikis, I., Daniels, G.H., Ross, D.S., et al. 1994. Diagnostic use of recombinant human thyrotropin in patients with thyroid car-cinoma (Phase l/ll study). J. Clin. Endocrinol. Metab. 78: 188–196.

    CAS  PubMed  Google Scholar 

  29. Gast, M.J. 1995. Evolution of clinical agents for ovulation induction. Am. J. Obstet. Gynecol. 172 (suppl., part 2): 753–759.

    Article  CAS  PubMed  Google Scholar 

  30. Whitcomb, R.W. and Crowley, W.F. 1990. Diagnosis and treatment of isolated gonadotropin-releasing hormone deficiency in men. J. Clin. Endocrinol. Metab. 70: 3–7.

    Article  CAS  PubMed  Google Scholar 

  31. Ben-Rafael, Z., Levy, T., and Schoemaker, J. 1995. Pharmacokinetics of follicle-stimulating hormone: clinical significance. Fertil. Steril. 63: 689–700.

    Article  CAS  PubMed  Google Scholar 

  32. Lunardi-Iskandar, Y., Bryant, J.L., Zeman, R.A., Lam, V.H., Samaniego, R., Besnier, J.M., et al. 1995. Tumorigenesis and metastasis of neoplastic Kaposi's sarcoma cell line in immunodeficient mice blocked by a human pregnancy hormone. Nature 375: 64–68.

    Article  CAS  PubMed  Google Scholar 

  33. Moyle, W.R., Campbell, R.K., Myers, R.V., Bernard, M.R., Han, Y., and Wang, X. 1994. Co-evolution of ligand-receptor pairs. Nature 268: 251–255.

    Article  Google Scholar 

  34. Tullner, W.W. 1994. Comparative aspects of primate chorionic gonadotropins. Contrib. Primat. 3: 235–257.

    Google Scholar 

  35. Condliffe, P.G. and Weintraub, B.D. 1979. Pituitary thyroid-stimulating hormone and other thyroid stimulating substances, pp. 499–574 in Hormones in blood, 3rd ed., Gray, C.H. and James, V.H.T. (eds.). Academic Press.

    Google Scholar 

  36. East-Palmer, J., Szkudlinski, M.W., Lee, J., Thotakura, N.R. and Weintraub, B.D. 1995. A novel, nonradioactive in vivo bioassay of thyrotropin (TSH). Thyroid 5: 55–59.

    Article  CAS  PubMed  Google Scholar 

  37. Liu, C., Roth, K.E., Lindau-Shepard, B.A., Shaffer, J.B. and Dias, J.A. 1994. Site-directed alanine mutagenesis of Phe33, Arg35, and Arg42-Ser43-Lys44 in the human gonadotropin α-subunit. J. Biol. Chem. 269: 25289–25294.

    PubMed  Google Scholar 

  38. Szkudlinski, M.W., Grossmann, M. and Weintraub, B.D. 1996. Structure-function studies of human TSH: new advances in design of glycoprotein hormone analogs. Trends Endocrinol. Metab. 7: 277–286.

    Article  CAS  PubMed  Google Scholar 

  39. Campbell, R.K., Dean-Emig, D.M. and Moyle, W.R. 1991. Conversion of human choriog-onadotropin into a follitropin by protein engineering. Proc. Natl. Acad Sci. USA 88: 760–764.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Dias, J.A., Zhang, Y., and Liu, X. 1994. Receptor binding and functional properties of chimeric human follitropin prepared by an exchange between a small hydrophilic intercysteine loop of human follitropin and human lutropin. J. Biol. Chem. 269: 25289–25294.

    CAS  PubMed  Google Scholar 

  41. Fiddes, J.C. and Goodman, H.M. 1979. Isolation, cloning and sequence analysis of the cDNA for the α-subunit of human chorionic gonadotropin. Nature 281: 351–356.

    Article  CAS  PubMed  Google Scholar 

  42. Sarkar, G. and Sommer, S.S. 1990. The “megaprimer” method of site-directed mutagenesis. BioTechniques 8: 404–407.

    CAS  PubMed  Google Scholar 

  43. Szkudlinski, M.W., Thotakura, N.R., Bucci, I., Joshi, L.R., Tsai, A., East-Palmer, J., et al. 1993. Purification and characterization of recombinant human thyrotropin isoforms produced by Chinese hamster ovary cells: the role of sialylation and sulfation in thyrotropin bioactivity. Endocrinology 133: 1490–1503.

    Article  CAS  PubMed  Google Scholar 

  44. Igarashi, S., Minegishi, T., Nakamura, K., Nakamura, M., Tano, M., Miyamoto, K., et al. 1994. Functional expression of recombinant human luteinizing hormone/human choriogonadotropin receptor. Biochem. Biophys. Res. Commun. 201: 248–256.

    Article  CAS  PubMed  Google Scholar 

  45. Ascoli, M. 1981. Characterization of several clonal lines of cultured Leydig tumor cells: gonadotropin receptors and steroidogenic responses. Endocrinology 108: 88–95

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szkudlinski, M., Teh, N., Grossmann, M. et al. Engineering human glycoprotein hormone superactive analogues. Nat Biotechnol 14, 1257–1263 (1996). https://doi.org/10.1038/nbt1096-1257

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1096-1257

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing