Review Article | Published:

Baculovirus as versatile vectors for protein expression in insect and mammalian cells

Nature Biotechnologyvolume 23pages567575 (2005) | Download Citation

Subjects

Abstract

Today, many thousands of recombinant proteins, ranging from cytosolic enzymes to membrane-bound proteins, have been successfully produced in baculovirus-infected insect cells. Yet, in addition to its value in producing recombinant proteins in insect cells and larvae, this viral vector system continues to evolve in new and unexpected ways. This is exemplified by the development of engineered insect cell lines to mimic mammalian cell glycosylation of expressed proteins, baculovirus display strategies and the application of the virus as a mammalian-cell gene delivery vector. Novel vector design and cell engineering approaches will serve to further enhance the value of baculovirus technology.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Luckow, V.L. & Summers, M.D. Trends in the development of baculovirus expression vectors. Bio/Technology 6, 47–55 (1988).

  2. 2

    O'Reilly, D.R., Miller, L.K. & Luckow, V.A. Baculovirus Expression Vectors: A Laboratory Manual (W.H. Freeman, New York, 1992).

  3. 3

    Miller, L.K. (ed.). The Baculoviruses (Plenum Press, New York, 1997).

  4. 4

    Possee, R.D. Baculoviruses as expression vectors. Curr. Opin. Biotechnol. 8, 569–572 (1997).

  5. 5

    Kost, T.A. & Condreay, J.P. Recombinant baculoviruses as expression vectors for insect and mammalian cells. Curr. Opin. Biotechnol. 10, 428–433 (1999).

  6. 6

    Freisen, D.P. & Miller, L.K. Insect viruses. in Fields' Virology, edn. 4, (eds. Knipe, D.M. et al.) 1871–1940 (Lippincott Williams and Wilkins, Philadelphia, 2001).

  7. 7

    Kitts, P.A., Ayres, M.D. & Possee, R.D. Linearization of baculovirus DNA enhances the recovery of recombinant virus expression vectors. Nucleic Acids Res. 18, 5667–5672 (1990).

  8. 8

    Kitts, P.A. & Possee, R.D. A method for producing recombinant baculovirus expression vectors at high frequency. Biotechniques 14, 810–817 (1993).

  9. 9

    Luckow, V.A., Lee, S.C., Barry, G.F. & Olins, P.O. Efficient generation of infectious recombinant baculoviruses by site-specific transposon-mediated insertion of foreign genes into a baculovirus genome propagated in Escherichia coli. J. Virol. 67, 4566–4579 (1993).

  10. 10

    Airenne, K.J., Peltomaa, E., Hytönen, V.P., Laitinen, O.H. & Ylä-Herttuala, S. Improved generation of recombinant baculovirus genomes in Escherichia coli. Nucleic Acids Res. 31, e101 (2003).

  11. 11

    Laitinen et al. A multipurpose vector system for the screening of libraries in bacteria, insect and mammalian cells and expression in vivo. Nucleic Acids Res. 33, e42 (2005).

  12. 12

    Pijlman, G.P., van den Born, E., Martens, D.E. & Vlak, J.M. Autographa californica baculoviruses with large genomic deletions are rapidly generated in infected insect cells. Virology 283, 132–138 (2001).

  13. 13

    Pijlman, G.P., van Schijndel, J.E. & Vlak, J.M. Spontaneous excision of BAC vector sequences from bacmid-derived baculovirus expression vectors upon passage in insect cells. J. Gen. Virol. 84, 2669–2678 (2003).

  14. 14

    Zhao, Y., Chapman, D.A. & Jones, I.M. Improving baculovirus recombination. Nucleic Acids Res. 31, e6 (2003).

  15. 15

    Chambers, S.P., Austen, D.A., Fulghum, J.R. & Kim, W.M. High-throughput screening for soluble recombinant expressed kinases in Escherichia coli and insect cells. Protein Expr. Purif. 36, 40–47 (2004).

  16. 16

    Page, R. et al. Scalable high-throughput micro-expression device for recombinant proteins. Biotechniques 37, 364–368 (2004).

  17. 17

    Bahia, D., Cheung, R., Buchs, M., Geisse, S. & Hunt, I. Optimization of insect cell growth in deep-well blocks: development of a high-throughput insect cell expression screen. Protein Expr. Purif. 39, 61–70 (2005).

  18. 18

    Kitts, P.A. & Green, G. An immunological assay for determination of baculovirus titers in 48 hours. Anal. Biochem. 268, 173–178 (1999).

  19. 19

    Kwon, M.S., Dojima, T., Toriyama, M. & Park, E.Y. Development of an antibody-based assay for determination of baculovirus titers in 10 hours. Biotechnol. Prog. 18, 647–651 (2002).

  20. 20

    Mulvania, T., Hayes, B. & Hedin, D. A flow cytometric assay for rapid, accurate determination of baculovirus titers. BioProcessing J. 3, 47–53 (2004).

  21. 21

    Shen, C.F., Meghrous, J. & Kamen, A. Quantitation of baculovirus particles by flow cytometry. J. Virol. Methods 105, 321–330 (2002).

  22. 22

    Lo, H.R. & Chao, Y.C. Rapid titer determination of baculovirus by quantitative real-time polymerase chain reaction. Biotechnol. Prog. 20, 354–360 (2004).

  23. 23

    Jarvis, D.L. Baculovirus expression vectors. in The Baculoviruses. (ed. Miller, L.K.) 389–431 (Plenum Press, New York, 1997).

  24. 24

    Marz, L., Altmann, F., Staudacher, E. & Kubelka, V. Protein glycosylation in insects. in Glycoproteins, vol. 29a. (eds. Montreuil, J., Vliegenthart, J.F.G. & Schachter, H.) 543–563 (Elsevier, Amsterdam, 1995).

  25. 25

    Marchal, I., Jarvis, D.L., Cacan, R. & Verbert, A. Glycoproteins from insect cells: sialylated or not? Biol. Chem. 382, 151–159 (2001).

  26. 26

    Altmann, F., Schwihla, H., Staudacher, E., Glossl, J. & Marz, L. Insect cells contain an unusual, membrane-bound β-N-acetylglucosaminidase probably involved in the processing of protein N-glycans. J. Biol. Chem. 270, 17344–17349 (1995).

  27. 27

    Jarvis, D.L., Kawar, Z.S. & Hollister, J.R. Engineering N-glycosylation pathways in the baculovirus-insect cell system. Curr. Opin. Biotechnol. 9, 528–533 (1998).

  28. 28

    Jarvis, D.L. Humanizing recombinant glycoprotein production in the baculovirus-insect cell expression system. Virology 310, 1–7 (2003).

  29. 29

    Tomiya, N., Betenbaugh, M.J. & Lee, Y.C. Humanization of lepidopteran insect-cell-produced glycoproteins. Acc. Chem. Res. 36, 613–620 (2003).

  30. 30

    Tomiya, N., Narang, S., Lee, Y.C. & Betenbaugh, M.J. Comparing N-glycan processing in mammalian cell lines to native and engineered lepidopteran insect cell lines. Glycoconj. J. 21, 343–360 (2004).

  31. 31

    Betenbaugh, M.J., Tomiya, N., Narang, S., Hsu, J.T. & Lee, Y.C. Biosynthesis of human-type N-glycans in heterologous systems. Curr. Opin. Struct. Biol. 14, 601–606 (2004).

  32. 32

    Jarvis, D.L., Fleming, J.A., Kovacs, G.R., Summers, M.D. & Guarino, L.A. Use of early baculovirus promoters for continuous expression and efficient processing of foreign gene products in stably transformed lepidopteran cells. Bio/Technology 8, 950–955 (1990).

  33. 33

    Jarvis, D.L., Weinkauf, C. & Guarino, L.A. Immediate early baculovirus vectors for foreign gene expression in transformed or infected insect cells. Protein Expr. Purif. 8, 191–203 (1996).

  34. 34

    Hollister, J.R., Shaper, J.H. & Jarvis, D.L. Stable expression of mammalian beta 1,4-galactosyltransferase extends the N-glycosylation pathway in insect cells. Glycobiology 8, 473–480 (1998).

  35. 35

    Hollister, J. & Jarvis, D.L. Engineering lepidopteran insect cells for sialoglycoprotein production by genetic transformation with mammalian β1,4-galactosyltransferase and a2,6-sialyltransferase genes. Glycobiology 11, 1–9 (2001).

  36. 36

    Hooker, A.D. et al. Constraints on the transport and glycosylation of recombinant IFN-gamma in chinese hamster ovary and insect cells. Biotech. Bioeng. 63, 559–572 (1999).

  37. 37

    Tomiya, N., Ailor, E., Lawrence, S.M., Betenbaugh, M.J. & Lee, Y.C. Determination of nucleotides and sugar nucleotides involved in protein glycosylation by high-performance anion-exchange chromatography: sugar nucleotide contents in cultured insect cells and mammalian cells. Anal. Biochem. 293, 129–137 (2001).

  38. 38

    Hollister, J., Conradt, H.O. & Jarvis, D.L. Evidence for a sialic acid salvaging pathway in lepidopteran insect cell lines. Glycobiology 13, 487–495 (2003).

  39. 39

    Hollister, J., Grabenhorst, E., Nimtz, M., Conradt, H.O. & Jarvis, D.L. Engineering the protein N-glycosylation pathway in insect cells for production of biantennary, complex N-glycans. Biochemistry 41, 15093–15104 (2002).

  40. 40

    Aumiller, J.J., Hollister, J.R. & Jarvis, D.L. A transgenic lepidopteran insect cell line engineered to produce CMP-sialic acid and sialoglycoproteins. Glycobiology 13, 497–507 (2003).

  41. 41

    Ailor, E. & Betenbaugh, M.J. Modifying secretion and post-translational processing in insect cells. Curr. Opin. Biotechnol. 10, 142–145 (1999).

  42. 42

    Higgins, M.K., Demir, M. & Tate, C.G. Calnexin co-expression and the use of weaker promoters increase expression of correctly assembled shaker potassium channel in insect cells. Biochim. Biophys. Acta 1610, 124–132 (2003).

  43. 43

    Zhang, L., Wu, G., Tate, C.G., Lookene, A. & Olivecrona, G. Calreticulin promotes folding/dimerization of human lipoprotein lipase expressed in insect cells. (Sf21). J. Biol. Chem. 278, 29344–29351 (2003).

  44. 44

    Fourneau, J.M., Cohen, H. & van Endert, P.M. A chaperone assisted high yield system for the production of HLA-DR4 tetramers in insect cells. J. Immunol. Methods 285, 253–264 (2004).

  45. 45

    Yokoyama, N. et al. Co-expression of human chaperones Hsp70 and Hsdj or Hsp40 cofactor increases solubility of overexpressed target proteins in insect cells. Biochim. Biophys. Acta 1493, 119–124 (2000).

  46. 46

    Martinez-Torrecuadrada, J.L. et al. An efficient expression system for the production of functionally active human LKB1. J. Biotechnol. 115, 23–34 (2005).

  47. 47

    Venkaiah, B., Viswanathan, P., Habib, S. & Hasnain, S.E. An additional copy of the homologous region (hr1) sequence in the Autographa californica multinucleocapsid polyhedrosis virus genome promotes hyperexpression of foreign genes. Biochemistry 43, 8143–8151 (2004).

  48. 48

    Chen, Y. et al. A constitutive super-enhancer: homologous region 3 of bombyx mori nucleopolyhedrosis virus. Biochem. Biophys. Res. Commun. 318, 1039–1044 (2004).

  49. 49

    Sano, K., Maeda, K., Oki, M. & Maeda, Y. Enhancement of protein expression in insect cells by a lobster tropomysin cDNA leader sequence. FEBS Lett. 532, 143–146 (2002).

  50. 50

    Ho, Y., Lo, H.R., Lee, T.C., Wu, C.P.Y. & Chao, Y.C. Enhancement of correct protein folding in vivo by a non-lytic baculovirus. Biochem. J. 382, 695–702 (2004).

  51. 51

    Kaba, S.A., Salcedo, A.M., Wafula, P.O., Vlak, J.M. & van Oers, M.M. Development of a chitinase and v–cathepsin negative bacmid for improved integrity of secreted recombinant proteins. J. Virol. Methods 122, 113–118 (2004).

  52. 52

    Sarramegna, V., Talmont, P., Demange, P. & Milon, A. Heterologous expression of G-protein-coupled receptors: comparison of expression systems from the standpoint of large-scale production and purification. Cell. Mol. Life Sci. 60, 1529–1546 (2003).

  53. 53

    Massotte, D. Protein-coupled receptor overexpression with the baculovirus-insect cell expression system: a tool for structural and functional studies. Biochim. Biophys. Acta 1610, 77–89 (2003).

  54. 54

    Gazi, L., Nickolls, S.A. & Strange, P.G. Functional coupling of the human dopamine D2 receptor with Gαi1, Gαi2, Gαi3 and Gα0 G proteins: evidence for agonist regulation of G protein selectivity. Br. J. Pharmacol. 138, 775–786 (2003).

  55. 55

    Hood, S.R., Shah, G. & Jones, P. Expression of cytochrome P450 in a baculovirus system. Methods Mol. Biol. 107, 203–218 (1998).

  56. 56

    Rushmore, T.H., Reider, P.J., Slaughter, D., Assang, C. & Shou, M. Bioreactor systems in drug metabolism: synthesis of cytochrome P450-generated metabolites. Metab. Eng. 2, 115–125 (2000).

  57. 57

    Sanchez, R.I. et al. Cytochrome p450 3a4 is the major enzyme involved in the metabolism of the substance P receptor antagonist aprepitant. Drug Metab. Dispos. 32, 1287–1292 (2004).

  58. 58

    Ikonomou, L., Schneider, Y.J. & Agathos, S.N. Insect cell culture for industrial production of recombinant proteins. Appl. Microbiol. Biotechnol. 62, 1–20 (2003).

  59. 59

    Maranga, L., Cruz, P.E., Aunins, J.A. & Carrondo, M.J.T. Production of core and virus-like-particles with baculovirus infected insect cells. Adv. Biochem. Eng. Biotechnol. 74, 183–206 (2002).

  60. 60

    Noad, R. & Roy, P. Virus-like particles as immunogens. Trends Microbiol. 11, 438–444 (2003).

  61. 61

    Garcea, R.L. & Gissman, L. Virus-like particles as vaccines and vessels for the delivery of small molecules. Curr. Opin. Biotechnol. 15, 513–517 (2004).

  62. 62

    Petry, H., Goldmann, C., Ast, O. & Luke, W. The use of virus-like particles for gene transfer. Curr. Opin. Mol. Ther. 5, 524–528 (2003).

  63. 63

    Berger, I., Fitzgerald, D.J. & Richmond, T.J. Baculovirus expression system for heterologous multiprotein complexes. Nat. Biotechnol. 22, 1583–1587 (2004).

  64. 64

    Fausch, S.C., DaSilva, D.M., Eiben, G.L., LePoole, I.C. & Kast, W.M. HPV protein/peptide vaccines: from animal models to clinical trials. Front. Biosci. 8, s81–s91 (2003).

  65. 65

    Stanley, M.A. Progress in prophylactic and therapeutic vaccines for human papilloma infection. Expert Rev. Vaccines 2, 381–389 (2003).

  66. 66

    Harper, D.M. et al. Efficacy of a bivalent L1 virus-like particle vaccine in prevention of infection with human papilloma types 16 and 18 in young women: a randomised controlled trial. Lancet 364, 1757–1765 (2004).

  67. 67

    Baumert, T.F., Ito, S., Wong, D.T. & Liang, T.J. Hepatitis C virus structural proteins assemble into virus-like particles in insect cells. J. Virol. 72, 3827–3836 (1998).

  68. 68

    Xiang, J. et al. Recombinant hepatitis C virus-like particles expressed by baculovirus: utility in cell-binding and antibody detection assay. J. Med. Virol. 68, 537–543 (2002).

  69. 69

    Choi, S.H., Kim, S.Y., Park, K.J., Kim, Y.J. & Hwang, S.B. Hepatitis C virus core protein is efficiently released into the culture medium in insect cells. J. Biochem. Mol. Biol. 37, 735–740 (2004).

  70. 70

    Girard, C. et al. Effect of the 5′ non-translated region on self assembly of hepatitis C virus genotype 1a structural proteins produced in insect cells. J. Gen. Virol. 85, 3659–3670 (2004).

  71. 71

    Jeong, S.H. et al. Immunization with hepatitis C virus-like particles induces humoral and cellular immune responses in nonhuman primates. J. Virol. 78, 6995–7003 (2004).

  72. 72

    Ho, Y., Lin, P.H., Liu, C.Y.Y., Lee, S.P. & Chao, Y.C. Assembly of human severe acute respiratory syndrome coronavirus-like particles. Biochem. Biophys. Res. Commun. 318, 833–838 (2004).

  73. 73

    Mortola, E. & Roy, P. Efficient assembly and release of SARS coronavirus-like particles by a heterologous expression system. FEBS Lett. 576, 174–178 (2004).

  74. 74

    Urabe, M., Ding, C. & Kotin, R.M. Insect cells as a factory to produce adeno-associated virus type 2 vectors. Hum. Gene Ther. 13, 1935–1943 (2002).

  75. 75

    Boublik, Y., Di Bonito, P. & Jones, I.M. Eukaryotic virus display: engineering the major surface glycoprotein of the Autographa californica nuclear polyhedrosis virus (AcNPV) for the presentation of foreign proteins on the virus surface. Bio/Technology 13, 1079–1084 (1995).

  76. 76

    Oker-Blom, C., Airenne, K.J. & Grabherr, R. Baculovirus display strategies: emerging tools for eukaryotic libraries and gene delivery. Brief. Funct. Genomic. Proteomic. 2, 244–253 (2003).

  77. 77

    Lindley, K. et al. Production of monoclonal antibodies using recombinant baculovirus displaying gp64-fusion proteins. J. Immunol. Methods 234, 123–135 (2000).

  78. 78

    Tanaka, T. et al. The generation of monoclonal antibodies against human peroxisome proliferator-activated receptors (PPARs). J. Atheroscler. Thromb. 9, 233–242 (2002).

  79. 79

    Yoshida, S. et al. Baculovirus virions displaying Plasmodium berghei circumsprozoite protein protect mice against malaria sporozoite infection. Virology 316, 161–170 (2003).

  80. 80

    Rahman, M.M., Shaila, M.S. & Gopinathan, K.P. Baculovirus display of fusion protein of Pestes des petits ruminants virus and hemagglutination protein of rinderpest virus and immunogenicity of the displayed proteins in mouse model. Virology 317, 36–49 (2003).

  81. 81

    Kaba, S.A., Nene, V., Musoke, A.J., Vlak, J.M. & van Oers, M.M. Fusion to green fluorescent protein improves expression of Theileria parva sporozoite surface antigen p67 in insect cells. Parasitology 125, 497–505 (2002).

  82. 82

    Tami, C. et al. Immunological properties of FMDV-gp64 fusion proteins expressed on SF9 cell and baculovirus surfaces. Vaccine 23, 840–845 (2004).

  83. 83

    Kukkonen, S.P. et al. Baculovirus capsid display: a novel tool for transduction imaging. Mol. Ther. 8, 853–862 (2003).

  84. 84

    Loisel, T.P. et al. Recovery of homogeneous and functional beta 2-adrenergic receptors from extracellular baculovirus particles. Nat. Biotechnol. 15, 1300–1304 (1997).

  85. 85

    Masuda, K. et al. A combinatorial G protein-coupled receptor reconstitution system on budded baculovirus. Evidence for Galpha and Galphao coupling to a human leukotriene B4 receptor. J. Biol. Chem. 278, 24552–24562 (2003).

  86. 86

    Hayashi, I. et al. Selective reconstitution and the recovery of functional γ-secretase complex on budded baculovirus particles. J. Biol. Chem. 279, 38040–38046 (2004).

  87. 87

    Maeda, S. et al. Production of human alpha-interferon in silkworm using a baculovirus vector. Nature 315, 592–594 (1985).

  88. 88

    Wu, D. et al. Expression of biologically active recombinant equine interferon-γ by two different expression systems using insect cells and silkworm larvae. Cytokine 20, 63–69 (2002).

  89. 89

    Sehgal, D., Malik, P.S. & Jameel, S. Purification and diagnostic utility of a recombinant hepatitis E virus capsid protein expressed in insect larvae. Protein Expr. Purif. 27, 27–34 (2003).

  90. 90

    Muneta, Y. et al. Expression and one-step purification of bovine interleukin-21 (IL-21) in silkworms using a hybrid baculovirus expression system. Biotechnol. Lett. 26, 1453–1458 (2004).

  91. 91

    Nagaya, H. et al. Establishment of a large-scale purification procedure for purification of recombinant bovine interferon-tau produced by a silkworm-baculovirus gene expression system. J. Vet. Med. Sci. 66, 1395–1401 (2004).

  92. 92

    Motohashi, T. Shimojima, T., Fukagawa, T., Maenaka, K. & Park, E.Y. Efficient large-scale production of larvae and pupae of silkworm by Bombyx mori nuclear polyhedrosis virus bacmid system. Biochem. Biophys. Res. Commun. 326, 564–569 (2005).

  93. 93

    Hofmann, C. et al. Efficient gene transfer into human hepatocytes by baculovirus vectors. Proc. Natl. Acad. Sci. USA 92, 10099–10103 (1995).

  94. 94

    Boyce, F.M. & Bucher, N.L. Baculovirus-mediated gene transfer into mammalian cells. Proc. Natl. Acad. Sci. USA 93, 2348–2352 (1996).

  95. 95

    Kost, T.A. & Condreay, J.P. Recombinant baculoviruses as mammalian cell gene-delivery vectors. Trends Biotechnol. 20, 173–180 (2002).

  96. 96

    Shoji, I. et al. Efficient gene transfer into various mammalian cells, including non-hepatic cells, by baculovirus vectors. J. Gen. Virol. 78, 2657–2664 (1997).

  97. 97

    Yap, C.C. et al. A hybrid baculovirus-T7 RNA polymerase system for recovery of an infectious virus from cDNA. Virology 231, 192–200 (1997).

  98. 98

    Condreay, J.P., Witherspoon, S.M., Clay, W.C. & Kost, T.A. Transient and stable gene expression in mammalian cells transduced with a recombinant baculovirus vector. Proc. Natl. Acad. Sci. USA 96, 127–132 (1999).

  99. 99

    Ho, Y.C., Chen, H.C., Wang, K.C. & Hu, Y.C. Highly efficient baculovirus-mediated gene transfer into rat chondrocytes. Biotechnol. Bioeng. 88, 643–651 (2004).

  100. 100

    Liang, C.Y., Wang, H.Z., Li, T.X., Hu, Z.H. & Chen, X.W. High efficiency gene transfer into mammalian kidney cells using baculovirus vectors. Arch. Virol. 149, 51–60 (2004).

  101. 101

    Gao, R. et al. High efficiency gene transfer into cultured primary rat and human hepatic stellate cells using baculovirus vectors. Liver 22, 15–22 (2002).

  102. 102

    Song, S.U. & Boyce, F.M. Combination treatment for osteosarcoma with baculoviral vector mediated gene therapy (p53) and chemotherapy (adriamycin). Exp. Mol. Med. 33, 46–53 (2001).

  103. 103

    Song, S.U. et al. Effective transduction of osteogenic sarcoma cells by a baculovirus vector. J. Gen. Virol. 84, 697–703 (2003).

  104. 104

    Clay, W.C. et al. Recombinant baculoviruses used to study estrogen receptor function in human osteosarcoma cells. Assay Drug Dev. Technol. 1, 801–810 (2003).

  105. 105

    Ho, Y.C., Chung, Y.C., Hwang, S.M., Wang, K.C. & Hu, Y.C. Transgene expression and differentiation of baculovirus-transduced human mesenchymal stem cells. J. Gene Med.; published online 11 February 2005 (10.1002/jgm.729).

  106. 106

    Leisy, D.J., Lewis, T.D., Leong, J.A. & Rohrmann, G.F. Transduction of cultured fish cells with recombinant baculoviruses. J. Gen. Virol. 84, 1173–1178 (2003).

  107. 107

    Wagle, M. & Jesuthasan, S. Baculovirus-mediated gene expression in zebrafish. Mar. Biotechnol. (NY) 5, 58–63 (2003).

  108. 108

    Hsu, C.S., Ho, Y.C., Wang, K.C. & Hu, Y.C. Investigation of optimal transduction conditions for baculovirus-mediated gene delivery into mammalian cells. Biotechnol. Bioeng. 88, 42–51 (2004).

  109. 109

    Hu, Y.C., Tsai, C.T., Chang, Y.J. & Huang, J.H. Enhancement and prolongation of baculovirus-mediated expression in mammalian cells: focuses on strategic infection and feeding. Biotechnol. Prog. 19, 373–379 (2003).

  110. 110

    Ramos, L. et al. Rapid expression of recombinant proteins in modified CHO cells using the baculovirus system. Cytotechnology 38, 37–41 (2002).

  111. 111

    Viswanathan, P. et al. The homologous region sequence (hr1) of Autographa californica multinucleocapsid polyhedrosis virus can enhance transcription from non-baculoviral promoters in mammalian cells. J. Biol. Chem. 278, 52564–52571 (2003).

  112. 112

    Spenger, A., Ernst, W., Condreay, J.P., Kost, T.A. & Grabherr, R. Influence of promoter choice and trichostatin A treatment on expression of baculovirus delivered genes in mammalian cells. Protein Expr. Purif. 38, 17–23 (2004).

  113. 113

    Bilello, J.P., Delaney, W.E., Boyce, F.M. & Isom, H.C. Transient disruption of intercellular junctions enables baculovirus entry into nondividing hepatocytes. J. Virol. 75, 9857–9871 (2001).

  114. 114

    Bilello, J.P., Cable, E.E., Myers, R.L. & Isom, H.C. Role of paracellular junction complexes in baculovirus-mediated gene transfer to nondividing rat hepatocytes. Gene Ther. 10, 733–749 (2003).

  115. 115

    Räty, J.K. et al. Enhanced gene delivery by avidin-displaying baculovirus. Mol. Ther. 9, 282–291 (2004).

  116. 116

    Hofmann, C. & Strauss, M. Baculovirus-mediated gene transfer in the presence of human serum or blood facilitated by inhibition of the complement system. Gene Ther. 5, 531–536 (1998).

  117. 117

    Huser, A. & Hofmann, C. Baculovirus vectors: novel mammalian cell gene-delivery vehicles and their applications. Am. J. Pharmacogenomics 3, 53–63 (2003).

  118. 118

    Hofmann, C., Huser, A., Lehnert, W. & Strauss, M. Protection of baculovirus-vectors against complement-mediated inactivation by recombinant soluble complement receptor type 1. Biol. Chem. 380, 393–395 (1999).

  119. 119

    Hoare, J., Waddington, S., Thomas, H.C., Coutelle, C. & McGarvey, M.J. Complement inhibition rescued mice allowing observation of transgene expression following intraportal delivery of baculovirus in mice. J. Gene Med. 7, 325–333 (2005).

  120. 120

    Barsoum, J., Brown, R., McKee, M. & Boyce, F.M. Efficient transduction of mammalian cells by a recombinant baculovirus having the vesicular stomatitis virus G glycoprotein. Hum. Gene Ther. 8, 2011–2018 (1997).

  121. 121

    Tani, H. et al. In vitro and in vivo gene delivery by recombinant baculoviruses. J. Virol. 77, 9799–9808 (2003).

  122. 122

    Li, Y., Wang, X., Guo, H. & Wang, S. Axonal transport of recombinant baculovirus vectors. Mol. Ther. 10, 1121–1129 (2004).

  123. 123

    Lehtolainen, P., Tyynela, K., Kannasto, J., Airenne, K.J. & Ylä-Herttuala, S. Baculoviruses exhibit restricted cell type specificity in rat brain: a comparison of baculovirus- and adenovirus-mediated intracerebral gene transfer in vivo. Gene Ther. 9, 1693–1699 (2002).

  124. 124

    Aoki, H. et al. Induction of antibodies in mice by a recombinant baculovirus expressing pseudorabies virus glycoprotein B in mammalian cells. Vet. Microbiol. 68, 197–207 (1999).

  125. 125

    Facciabene, A., Aurisicchio, L. & La Monica, N. Baculovirus vectors elicit antigen-specific immune responses in mice. J. Virol. 78, 8663–8672 (2004).

  126. 126

    Abe, T. et al. Baculovirus induces an innate immune response and confers protection from lethal influenza virus infection in mice. J. Immunol. 171, 1133–1139 (2003).

  127. 127

    Gronowski, A.M., Hilbert, D.M., Sheehan, K.C., Garotta, G. & Schreiber, R.D. Baculovirus stimulates antiviral effects in mammalian cells. J. Virol. 73, 9944–9951 (1999).

  128. 128

    Ye, G.J., Vaughan, K.T., Vallee, R.B. & Roizman, B. The herpes simplex virus 1 U(L)34 protein interacts with a cytoplasmic dynein intermediate chain and targets nuclear membrane. J. Virol. 74, 1355–1363 (2000).

  129. 129

    Zhou, G., Galvan, V., Campadelli-Fiume, G. & Roizman, B. Glycoprotein D or J delivered in trans blocks apoptosis in SK-N-SH cells induced by a herpes simplex virus 1 mutant lacking intact genes expressing both glycoproteins. J. Virol. 74, 11782–11791 (2000).

  130. 130

    Benetti, L. & Roizman, B. Herpes simplex virus protein kinase US3 activates and functionally overlaps protein kinase A to block apoptosis. Proc. Natl. Acad. Sci. USA 101, 9411–9416 (2004).

  131. 131

    Zhou, G. & Roizman, B. Truncated forms of glycoprotein D of herpes simplex virus 1 capable of blocking apoptosis and of low-efficiency entry into cells form a heterodimer dependent on the presence of a cysteine located in the shared transmembrane domains. J. Virol. 76, 11469–11475 (2002).

  132. 132

    Zhou, G., Avitabile, E., Campadelli-Fiume, G. & Roizman, B. The domains of glycoprotein D required to block apoptosis induced by herpes simplex virus 1 are largely distinct from those involved in cell-cell fusion and binding to nectin1. J. Virol. 77, 3759–3767 (2003).

  133. 133

    Kronschnabl, M., Marschall, M. & Stamminger, T. Efficient and tightly regulated expression systems for the human cytomegalovirus major transactivator protein IE2p86 in permissive cells. Virus Res. 83, 89–102 (2002).

  134. 134

    Kronschnabl, M. & Stamminger, T. Synergistic induction of intercellular adhesion molecule-1 by the human cytomegalovirus transactivators IE2p86 and pp71 is mediated via an Sp1-binding site. J. Gen. Virol. 84, 61–73 (2003).

  135. 135

    Delaney, W.E. & Isom, H.C. Hepatitis B virus replication in human HepG2 cells mediated by hepatitis B virus recombinant baculovirus. Hepatology 28, 1134–1146 (1998).

  136. 136

    Delaney, W.E., Miller, T.G. & Isom, H.C. Use of the hepatitis B virus recombinant baculovirus-HepG2 system to study the effects of (−)-beta-2',3′-dideoxy-3′-thiacytidine on replication of hepatitis B virus and accumulation of covalently closed circular DNA. Antimicrob. Agents Chemother. 43, 2017–2026 (1999).

  137. 137

    Gaillard, R.K. et al. Kinetic analysis of wild-type and YMDD mutant hepatitis B virus polymerases and effects of deoxyribonucleotide concentrations on polymerase activity. Antimicrob. Agents Chemother. 46, 1005–1013 (2002).

  138. 138

    Abdelhamed, A.M., Kelley, C.M., Miller, T.G., Furman, P.A. & Isom, H.C. Rebound of hepatitis B virus replication in HepG2 cells after cessation of antiviral treatment. J. Virol. 76, 8148–8160 (2002).

  139. 139

    Fipaldini, C., Bellei, B. & La Monica, N. Expression of hepatitis C virus cDNA in human hepatoma cell line mediated by a hybrid baculovirus-HCV vector. Virology 255, 302–311 (1999).

  140. 140

    McCormick, C.J., Rowlands, D.J. & Harris, M. Efficient delivery and regulable expression of hepatitis C virus full-length and minigenome constructs in hepatocyte-derived cell lines using baculovirus vectors. J. Gen. Virol. 83, 383–394 (2002).

  141. 141

    McCormick, C.J., Challinor, L., Macdonald, A., Rowlands, D.J. & Harris, M. Introduction of replication-competent hepatitis C virus transcripts using a tetracycline-regulable baculovirus delivery system. J. Gen. Virol. 85, 429–439 (2004).

  142. 142

    Wagle, M. et al. EphrinB2a in the zebrafish retinotectal system. J. Neurobiol. 59, 57–65 (2004).

  143. 143

    Nicholson, L.J., Philippe, M., Paine, A.J., Mann, D.A. & Dolphin, C.T. RNA interference mediated in human primary cells via recombinant baculoviral vector. Mol. Ther. 11, 638–644 (2005).

  144. 144

    Pfohl, J.L. et al. Titration of KATP channel expression in mammalian cells utilizing recombinant baculovirus transduction. Receptors Channels 8, 99–111 (2002).

  145. 145

    Boudjelal, M. et al. The application of bacmam technology in nuclear receptor drug discovery. Biotechnol. Ann. Rev. 11, in press, (2005).

  146. 146

    Ames, R. et al. BacMam recombinant baculoviruses in G protein-coupled receptor drug discovery. Receptors Channels 10, 99–107 (2004).

  147. 147

    Ames, R. et al. Heterologous expression of G protein-coupled receptors in U-2 OS osteosarcoma cells. Receptors Channels 10, 117–124 (2004).

  148. 148

    Jenkinson, S. et al. Development of a novel high-throughput surrogate assay to measure HIV envelope/CCR5/CD4-mediated viral/cell fusion using bacmam baculovirus technology. J. Biomol. Screen. 8, 463–470 (2003).

  149. 149

    Su, J.L. et al. A cell-based time-resolved fluorescence assay for selection of antibody reagents for G protein-coupled receptor immunohistochemistry. J. Immunol. Methods 291, 123–135 (2004).

  150. 150

    Kost, T.A., Condreay, J.P. & Mickelson, C.A. Biosafety and viral gene transfer vectors. in Biological Safety, Principles and Practices, edn. 3, (eds. Fleming, D.O. & Hunt, D.L.) 579–597 (ASM Press, Washington, DC, 2000).

Download references

Acknowledgements

T.A.K. and J.P.C. thank John Gray, Mike Romanos and John Reardon at GlaxoSmithKline for their continued support and encouragement of the development and application of baculovirus technology. D.L.J. thanks the National Institutes of Health (GM49734) and the National Science Foundation (BES9814157 and BES9818001) for generously supporting baculovirus–insect cell work in his laboratory. The authors appreciate the assistance of James Frye in preparing the figures.

Author information

Affiliations

  1. Gene Expression Protein Biochemistry, GlaxoSmithKline R&D, 5 Moore Drive, Research Triangle Park, 27709, North Carolina, USA

    • Thomas A Kost
    •  & J Patrick Condreay
  2. Department of Molecular Biology, University of Wyoming, Laramie, 82071, Wyoming, USA

    • Donald L Jarvis

Authors

  1. Search for Thomas A Kost in:

  2. Search for J Patrick Condreay in:

  3. Search for Donald L Jarvis in:

Competing interests

T.A.K. and J.P.C. declare that they have no competing financial interests. D.L.J. declares that technology for modifying protein processing pathways in insect cell lines and certain insect cell lines described in the publication have been licensed to a commercial vendor.

Corresponding author

Correspondence to Thomas A Kost.

About this article

Publication history

Published

Issue Date

DOI

https://doi.org/10.1038/nbt1095

Further reading