Research Paper | Published:

Stable Multicopy Vectors for High–Level Secretion of Recombinant Human Serum Albumin by Kluyveromyces Yeasts

Bio/Technology volume 9, pages 968975 (1991) | Download Citation

Subjects

Abstract

We have designed stable pKD1 derivatives for efficient secretion of recombinant human serum albumin (rHSA) by industrial strains of Kluyveromyces yeasts. A comparison of this multi–copy expression system with isogenic cassettes integrated at chromosomal loci demonstrated that high level secretion of rHSA is a function of gene dosage in K. lactis. Various signal sequences could be used, and the secretion levels were independent of the presence of the native pro peptide. The mitotic stability of the pKD1–based expression vectors was found to be species and strain dependent and was influenced by promoter strength and culture conditions. Vector stability was drastically enhanced when the HSA gene was expressed from an inducible promoter: 90% of the transformed cells still harbored the vector after 100 generations of non–selective growth in uninduced culture conditions. Secretion levels in the range of several grams per liter of correctly folded and processed rHSA were obtained at the pilot scale, thus making the industrial production of pharmaceutical–grade, Kluyveromyces–derived rHSA economically feasible.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    and 1977. In: Albumin: Structure, Function and Uses, p. 159–182. Rosenoer, V.M., Oratz, M., Rothschild, M.A. (Eds.). Pergamon Press Inc., Oxford.

  2. 2.

    , and 1985. Plasma protein fractionation. Trends Biotechnol. 3: 267–270.

  3. 3.

    In: Albumin Structure, Function and Uses. p. 27–51. Rosenoer, V.M., Oratz, M., Rothschild, M.A. (Eds.). Pergamon Press Inc., Oxford.

  4. 4.

    , , , , , , and 1987. Synthesis and purification of mature human serum albumin from E. coli. Bio/Technology 5: 1309–1314.

  5. 5.

    , , and 1987. Secretion of human serum albumin from B. subtilis. J. Bacteriol. 169: 2917–2925.

  6. 6.

    and 1982. In: The Molecular Biology of the Yeast Saccharomyces: Metabolism and Gene Expression, p. 361–398. Strathern, J., Jones, E., and Broach, J. (Eds.). Cold Spring Harbor Laboratory, Cold Spring Harbor, N.Y.

  7. 7.

    and 1978. Calcium ion-dependent vesicle fusion in the conversion of proalbumin to albumin. Nature 271: 384–385.

  8. 8.

    , , , and 1980. Processing mechanisms in the biosynthesis of proteins. Ann. N.Y. Acad. Sci. 343: 1–16.

  9. 9.

    , , , , and , 1987. Kex2 protease has the properties of a human proalbumin converting enzyme. Science 235: 348–351.

  10. 10.

    , and 1990. A novel aspartyl protease allowing KEX2-independent MFα propheromone processing in yeast. Yeast 6: 127–137.

  11. 11.

    , and 1990. The secretion of human serum albumin from the yeast Saccharomyces cerevisiae using five different leader sequences. Bio/Technology 8: 42–46.

  12. 12.

    , and 1986. Regulation of the chelatin promoter during the expression of human serum albumin or yeast phosphoglycerate kinase in yeast. Bio/Technology 4: 726–730.

  13. 13.

    , , , , , and 1990. Synthesis of a gene for human serum albumin and its expression in S. cerevisiae. Nuc. Acids Res. 18: 6075–6081.

  14. 14.

    , , and 1990. The plasmid-encoded killer system of Kluyveromyces lactis: a review. Yeast 6: 1–29.

  15. 15.

    , , , , and , , , , , and 1990. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Bio/Technology 8: 135–139.

  16. 16.

    , and 1988. A nuclear gene required for the expression of the linear DNA-associated killer system in the yeast Kluyveromyces lactis. Yeast 4: 71–81.

  17. 17.

    , and , 1988. The Kluyveromyces lactis KEX1 gene encodes a subtilisin-type serine proteinase. FEBS Lett. 234: 464–470.

  18. 18.

    , , , , , , , and 1988. A gene-cloning system lor Kluyveromyces lactis and isolation of a chromosomal gene required for killer toxin production. J. Basic Microbiol. 28: 211–220.

  19. 19.

    , , , and 1986. Analysis of a 1.6-μm circular plasmid from the yeast Kluyveromyces drosophilarum: structure and molecular dimorphism. Plasmid 15: 248–252.

  20. 20.

    , , , , and 1986. Sequence organization of the circular plasmid pKD1 from the yeast Kluyveromyces drosophilarum. Nucl. Acids Res. 14: 4471–4481.

  21. 21.

    , , , , and 1989. Transformation of the yeast Kluyveromyces lactis by new vectors derived from the 1.6 μm circular plasmid pKD1. Curr. Genet. 12: 185–192.

  22. 22.

    , , and 1989. The host range of the pKD1-derived plasmids in yeast. Curr. Genet. 16: 95–98.

  23. 23.

    and 1985.Structure of a linear plasmid of the yeast Kluyveromyces lactis: compact organization of the killer genome. Curr. Genet. 9: 147–155.

  24. 24.

    , , , , and 1983. The primary structure of the Saccharomyces cerevisiae gene for 3-phosphoglycerate kinase. Nuc. Acids Res. 10: 7791–7808.

  25. 25.

    1984. Compilation and analysis of sequences upstream from the translational start in eukaryotic mRNA. Nuc. Acids Res. 12: 857–879.

  26. 26.

    , and 1987. Compilation and comparison of the sequence context around the AUG startcodons in Saccharomyces cerevisiae mRNAs. Nuc. Acid Res. 15: 3581–3593.

  27. 27.

    1986. Point mutations define a sequence flanking the AUG initiator codon that modulates translation by eukaryotic ribosomes. Cell 44: 283–292.

  28. 28.

    and 1986. The killer toxin of Kluyveromyces lactis: characterization of the toxin subunits and identification of the genes which encodes them. EMBO J. 5: 1995–2002.

  29. 29.

    , , , and 1987. High-level secretion of glycosylated invertase in the methylo-trophic yeast, Pichia pastoris. Bio/Technology 5: 1305–1308.

  30. 30.

    , and 1991. Phospho-glucose isomerase gene is involved in the Rag phenotype of the yeast Kluyveromyces lactis. Mol. Gen. Genet. In press.

  31. 31.

    1983. One-step gene disruption in yeast. Methods in Enzymol. 101: 202–211.

  32. 32.

    , and , 1988. The RAG2 gene of the yeast Kluyveromyces lactis codes for a putative phosphoglu-cose isomerase. Nuc. Acid Res. 16: 8714.

  33. 33.

    and 1984. Expression of heterologous genes in Saccharomyces cerevisiae from vectors utilizing the glyceraldehy-3-phosphate gene promoter. Gene 32: 263–274.

  34. 34.

    , , and 1984. Analysis of a eukaryotic β-galactosidase gene: the N-terminal end of the yeast Kluyveromyces lactis protein shows homology to the Escherichia coli lacZ gene product. Nuc. Acids Res. 5: 2327–2341.

  35. 35.

    , and 1987. Identification of upstream activator sequences that regulate induction of the β-ga-lactosidase gene in Kluyveromyces lactis. Mol. Cell. Biol. 7: 4369–4376.

  36. 36.

    , and 1985. A positive regulatory element is involved in the induction of the β-galactosidase gene from Kluyveromyces lactis. EMBO J. 4: 793–798.

  37. 37.

    , , , , , , , , , and 1991. High level secretion of correctly processed recombinant human interleukin-1β in Kluyveromyces lactis. Gene. In press.

  38. 38.

    , , and 1987. Characterization of a positive regulatory gene, LAC9, that controls induction of the lactose-galactose regulon of Kluyveromyces lactis: Structural and functional relationships to GAL4 of Saccharomyces cerevisiae. Mol. Cell. Biol. 7: 1111–1121.

  39. 39.

    , , , , , , and 1991. Saccharomyces cerevisiae strains that overexpress heterologous proteins. Bio/Technology 9: 183–187.

  40. 40.

    1989. Method for the microbiological preparation of human serum albumin and other heterologous proteins from yeast. Europ. Patent Appl. N° 89 10480.

  41. 41.

    , , and 1983. Transformation of intact yeast cells treated with alkali cations. J. Bacteriol. 153: 163–168.

  42. 42.

    , , and 1990. The primary structure of the 3-phosphoglycerate kinase (PGK) gene from Kluyveromyces lactis. Nuc. Acids Res. 18: 365.

  43. 43.

    , , and 1987. Interaction of GAL4 and GAL80 gene regulatory proteins in vivo. Mol. Cell. Biol. 7: 3446–3451.

Download references

Author information

Author notes

    • R. Fleer

    Corresponding author.

Affiliations

  1. Rhône-Poulenc Rorer, Biotechnology Department, 13 quai Jules Guesde, B.P. 14, 94403 Vitry sur Seine Cedex, France.

    • R. Fleer
    • , P. Yeh
    • , N. Amellal
    • , I. Maury
    • , A. Fournier
    • , F. Bacchetta
    • , P. Baduel
    • , G. Jung
    • , J. Becquart
    •  & J. F. Mayaux
  2. Institut Mérieux, B.P. 3, Marcy-l'Etoile 69752 Charbonnières/Bains Cedex, France.

    • H. L'Hôte
  3. Institut Curie, Section de Biologie, Bâtiment 110, Centre Universitaire, 91405 Orsay, France.

    • H. Fukuhara

Authors

  1. Search for R. Fleer in:

  2. Search for P. Yeh in:

  3. Search for N. Amellal in:

  4. Search for I. Maury in:

  5. Search for A. Fournier in:

  6. Search for F. Bacchetta in:

  7. Search for P. Baduel in:

  8. Search for G. Jung in:

  9. Search for H. L'Hôte in:

  10. Search for J. Becquart in:

  11. Search for H. Fukuhara in:

  12. Search for J. F. Mayaux in:

About this article

Publication history

Received

Accepted

Published

DOI

https://doi.org/10.1038/nbt1091-968

Further reading Further reading