Abstract
The genomes of all eukaryotes appear to contain a special class of loci, termed microsatellites, which can serve, if sequenced and taken as the substrate for the polymerase chain reaction, as highly informative, locus-specific markers. By analogy to the “sequence tagged sites” recently proposed by Olsen et al.1 for standardizing the human physical gene map, these microsatellite markers are termed “sequence tagged micro satellite sites” (STMS). Genetic maps based on STMS will share with the Olsen physical maps the advantage that mapping vocabularies will be standardized to the DNA sequence base and that access to any particular locus will not require shipping or storing cloned probes. The species map will consist simply of a listing of nucleotide sequences. Reference populations for developing STMS maps can be chosen on the basis of biological or economic interest. It will not be necessary to maximize for genetic divergence.
This is a preview of subscription content, access via your institution
Relevant articles
Open Access articles citing this article.
-
Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers
Scientific Reports Open Access 28 February 2020
-
Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes
BMC Genomics Open Access 12 May 2015
Access options
Subscribe to this journal
Receive 12 print issues and online access
$209.00 per year
only $17.42 per issue
Rent or buy this article
Prices vary by article type
from$1.95
to$39.95
Prices may be subject to local taxes which are calculated during checkout
References
Olson, M., Hood, L., Cantor, C., Botstein, D. 1989. A common language for physical mapping of the human genome. Science 245: 1434–1435.
Botstein, D., White, R.L., Skolnick, M. and Davis, R.W. 1980. Construction of a genetic linkage map in man using restriction fragment length polymorphisms. Am. J. Hum. Genet. 32: 314–331.
Solomon, E., Bodmer, W.F. 1979. Evolution of sickle variant gene. Lancet I, (8122): 923.
Beckmann, J.S., Soller, M. 1988. Detection of linkage between marker loci and loci affecting quantitative traits in crosses between segregating populations. Theor. Appl. Genet. 76: 228–236.
Kashi, Y., Hallerman, E.M., Soller, M. 1990. Marker-assisted selection of candidate sires for progeny testing programs. Animal Production.In press.
Nakamura, Y., Leppert, M., O'Connell, P., Wolff, R., Holm, T., Culver, M., Martin, C., Fujumoto, E., Hoff, M., Kumlin, E., White, R. 1987. Variable number of tandem repeat (VNTR) markers for human gene mapping. Science 235: 1616–1622.
Wong, A., Wilson, V., Jeffreys, A.J., Thein, S.L. 1986. Cloning a selected fragment from a human DNA “fingerprint”: Isolation of an extremely polymorphic minisatellite. Nucl. Ac. Res. 14: 4505–4616.
Royle, N.J., Clarkson, R.E., Wong, Z. and Jeffreys, A.J. 1988. Clustering of hypervariable minisatellites in the proterminal regions of human autosomes. Genomics 3: 352–360.
Saiki, R.K., Gelfand, D.H., Stoffe, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239: 487–491.
White, T.J., Anrhein, N., Erlich, H.A. 1989. The polymerase chain reaction. Trends in Genetics 5: 185–189.
Vosberg, H.P. 1989. The polymerase chain reaction: An improved method for the analysis of nucleic acids. Hum. Genet. 83: 1–15.
Hamada, H., Petrino, M.G. and Kakunaga, T. 1982. A novel repeated element with Z-DNA-forming potential is widely found in evolutionarily diverse eukaryotic genomes. Proc. Natl. Acad. Sci. USA 79: 6465–6469.
Tautz, D. and Renz, M. 1984. Simple sequences are ubiquitous repetitive components of eukaryotic genomes. Nucleic Acids Res. 12: 4127–4138.
Zischler, H., Schafer, R. and Epplen, J.T. 1989. Non-radioactive oligonucleotide fingerprinting in the gel. Nucleic Acids Research 17: 4411.
Kirschoff, C. 1988. GATA tandem repeats detect minisatellite regions in blowfly DNA (Diptera: Calliphoridae). Chromosoma 96: 107–111.
Schafer, R., Ali, S. and Epplen, J.T. 1986. The organization of the evolutionarily conserved GATA/GACA repeats in the mouse genome. Chromosoma 93: 502–510.
Vergnaud, G. 1989. Polymers of random short oligonucleotides detect polymorphic loci in the human genome. Nucleic Acids Res. 17: 7623–7630.
Braaten, D.C., Thomas, J.R., Little, R.D., Dickson, K.R., Goldberg, I., Schlessinger, D., Ciccodicola, A. and D'Urso, M. 1988. Locations and contexts of sequences that hybridize to poly(dG-dT).(dC-dA) in mammalian ribosomal DNAs and two X-linked genes. Nucleic Acids Res. 16: 865–881.
Litt, M., Luty, J.A. 1989. A hypervariable microsatellite revealed by in vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J. Hum Genet. 44: 397–401.
Smeets, H.J.M., Brunner, H.G., Ropers, H.H., Wieringa, B. 1989. Human Genet. Use of variable simple sequence motifs as genetic markers: application to study of myotonic dystrophy. 83: 245–251.
Weber, J.L., May, P.E. 1989. Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am. J. Hum. Genet. 44: 388–396.
Kerem, B., Rommens, J.M., Buchanan, J.A., Markeiwicz, D., Cox, T.K., Chakravarti, A., Buchwald, M., Tsui, L. 1989. Identification of the cystic fibrosis gene: Genetic analysis. Science 245: 1073–1080.
Rommens, J.M. Iannuzzi, M.C., Kerem, B., Drumm, M.L., Melmer, G., Dean, M., Rozmahel, R., Cole, J.L., Kennedy, D., Hidaka, N., Zsiga, M., Buchwald, M., Riordan, J.R., Tsui, L., Collins, F.S. 1989. Identification of the cystic fibrosis gene: Chromosome walking and jumping. Science 245: 1059–1065.
Suthers, G.K., Callen, D.F., Hyland, V.J., Kozman, H.M., Baker, E., Eyre, H., Harper, P.S., Roberts, S.H., Hors-Cayla, M.C., Davies, K.E., Bell, M.V., Sutherland, G.R. 1989. A new DNA marker tightly linked to the Fragile X Locus (FRAXA). Science 246: 1298–1300.
Kashi, Y., Iraqi, F., Tikoschinsky, Y., Rudinsky, B., Nave, A., Beckmann, J.S., Friedmann, A., Soller, M. and Gruenbaum, Y. 1990. Poly(TG) uncovers a Y-specific fragment in bovine. Genomics 7: 31–36.
Li, M., Gyllensten, U.B., Cui, X., Saiki, R.K., Erlich, H.A., Arnheim, N. 1988. Amplification and analysis of DNA sequences in single human sperm and diploid cells. Nature 335: 414–417.
Chang, D., Bowman, J.L., DeJohn, A.W., Lander, E.S., Meyrowitz, E.M. 1988. Restriction fragment length polymorphisms map for Arabidposis thaliana. Proc. Natl. Acad. Sci. USA 85: 6856–6860.
Gebhardt, D., Ritter, E., Debener, T., Schachtsnabel, U., Walkemeir, B., Uhrig, H., Salamini, F. 1989. RFLP analysis and linkage mapping in Solanum tubersosum. Theor. Appl. Genet. 78: 65–75.
Havey, J.J., Muehlbauer, F.J. 1989. Linkages between restriction fragment length, isozyme, and morphological markers in lentil. Theor. Appl. Genet. 77: 395–401.
Helentjaris, T., Slocum, M., Wright, S., Schaefer, A., Nienhuis, J. 1986. Construction of genetic linkage maps in maize and tomato using restriction fragment length polymorphisms. Theor. Appl. Genet. 72: 7561–769.
Landry, B.S., Kesseli, R.V., Farrara, B., Michelmore, R.W. 1987. A genetic map of lettuce (Lactuca sativa) with restriction fragment length polymorphism, isozyme, disease resistance and morphological markers. Genetics 116: 331–337.
McCouch, S.R., Kochert, G., Yu, Z.H., Wang, Z.Y., Kush, G.S., Coffman, W.R., Tanksley, S.D. 1988. Molecular mapping of rice chromosomes. Theor. Appl. Genet. 76: 815–829.
Beckmann, J.S. and Soller, M. 1983. Restriction fragment length polymorphisms in genetic improvement: methodologies, mapping and costs. Theor. Appl. Genetics 67: 35–43.
Beckmann, J.S. and Soller, M. 1986. Restriction fragment length polymorphisms in plant genetic improvement, p. 196–250. In: Oxford Surveys of Plant Molecular and Cell Biology, Vol. 3. B. J. Miflin (Ed.). Oxford Press, Oxford.
Edwards, M.D., Stuber, C.W., Wendel, J.F. 1987. Molecular-marker facilitated investigations of quantitative trait loci in maize. I. Numbers, genomic distribution and types of gene action. Genetics 116: 113–125.
Lander, E., Bostein, D. 1989. Mapping Mendelian factors underlying quantitative traits using RFLP linkage maps. Genetics 121: 185–199.
Paterson, A.H., Lander, E.S., Hewitt, J.D., Peterson, S., Lincoln, S.E., Tanksley, S.D. 1988. Resolution of quantitative traits into Mendelian factors by using a complete linkage map of restriction fragment length polymorphisms. Nature 335: 721–726.
Soller, M. and Beckmann, J.S. 1983. Genetic polymorphism in varietal identification and genetic improvement. Theor. Appl. Genet. 67: 25–33.
Soller, M., Genizi, A. and Brody, T. 1976. On the power of experimental designs for the detection of linkage between marker loci and quantitative loci in crosses between inbred lines. Theor. Appl. Genet. 47: 35–39.
Soller, M., Genizi, A. 1978. The efficiency of experimental designs for the detection of linkage between a marker locus and a locus affecting a quantitative trait in segregating populations. Biometrics 34: 47–55.
Weller, J.I. 1986. Maximum likelihood techniques for the mapping and analysis of quantitative trait loci with the aid of genetic markers. Biometrics 42: 627–640.
Weller, J.I. 1987. Mapping and analysis of quantitative trait loci in Lycopersicon (tomato) with the aid of genetic markers using approximate maximum likelihood methods. Heredity 59: 413–421.
Weller, J.I., Soller, M., Brody, T. 1988. Linkage analysis of quantitative traits in an interspecific cross of tomato (Lycopersicon esculentum-×Lycopersicon pimpinellifolium) by means of genetic markers. Genetics 1218: 329–339.
Weller, J.I., Kashi, Y., Soller, M. 1990. Power of “daughter” and “granddaughter” designs for mapping of quantitative traits in dairy cattle using genetic markers. J. Dairy Science. In press.
Author information
Authors and Affiliations
Rights and permissions
About this article
Cite this article
Beckmann, J., Soller, M. Toward a Unified Approach to Genetic Mapping of Eukaryotes Based on Sequence Tagged Microsatellite Sites. Nat Biotechnol 8, 930–932 (1990). https://doi.org/10.1038/nbt1090-930
Issue Date:
DOI: https://doi.org/10.1038/nbt1090-930
This article is cited by
-
Molecular characterization and genetic diversity assessment in Mandukaparni (Centella asiatica L.) accessions
Genetic Resources and Crop Evolution (2023)
-
Characterization of Induced High Yielding Cowpea Mutant Lines Using Physiological, Biochemical and Molecular Markers
Scientific Reports (2020)
-
Assessment of genetic diversity among Jordanian wild barley (Hordeum spontaneum) genotypes revealed by SSR markers
Genetic Resources and Crop Evolution (2016)
-
SSR based genetic diversity of pigmented and aromatic rice (Oryza sativa L.) genotypes of the western Himalayan region of India
Physiology and Molecular Biology of Plants (2016)
-
Characterization of repetitive DNA landscape in wheat homeologous group 4 chromosomes
BMC Genomics (2015)