Letter | Published:

Migration and differentiation of neural precursors derived from human embryonic stem cells in the rat brain

Nature Biotechnologyvolume 23pages601606 (2005) | Download Citation



Human embryonic stem (hES) cells provide a potentially unlimited cell source for regenerative medicine. Recently, differentiation strategies were developed to direct hES cells towards neural fates in vitro. However, the interaction of hES cell progeny with the adult brain environment remains unexplored. Here we report that hES cell–derived neural precursors differentiate into neurons, astrocytes and oligodendrocytes in the normal and lesioned brain of young adult rats and migrate extensively along white matter tracts. The differentiation and migration behavior of hES cell progeny was region specific. The hES cell–derived neural precursors integrated into the endogenous precursor pool in the subventricular zone, a site of persistent neurogenesis. Like adult neural stem cells, hES cell–derived precursors traveled along the rostral migratory stream to the olfactory bulb, where they contributed to neurogenesis. We found no evidence of cell fusion, suggesting that hES cell progeny are capable of responding appropriately to host cues in the subventricular zone.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.


  1. 1

    Kim, J.H. et al. Dopamine neurons derived from embryonic stem cells function in an animal model of Parkinson's disease. Nature 418, 50–56 (2002).

  2. 2

    Bjorklund, L.M. et al. Embryonic stem cells develop into functional dopaminergic neurons after transplantation in a Parkinson rat model. Proc. Natl. Acad. Sci. USA 99, 2344–2349 (2002).

  3. 3

    Barberi, T. et al. Neural subtype specification of fertilization and nuclear transfer embryonic stem cells and application in parkinsonian mice. Nat. Biotechnol. 21, 1200–1207 (2003).

  4. 4

    Brustle, O. et al. Embryonic stem cell-derived glial precursors: a source of myelinating transplants. Science 285, 754–756 (1999).

  5. 5

    McDonald, J.W. et al. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5, 1410–1412 (1999).

  6. 6

    Englund, U., Fricker-Gates, R.A., Lundberg, C., Bjorklund, A. & Wictorin, Y. Transplantation of human neural progenitor cells into the neonatal rat brain: extensive migration and differentiation with long-distance axonal projections. Exp. Neurol. 173, 1–21 (2002).

  7. 7

    Englund, U., Bjorklund, A. & Wictorin, K. Migration patterns and phenotypic differentiation of long-term expanded human neural progenitor cells after transplantation into the adult rat brain. Dev. Brain Res. 134, 123–141 (2002).

  8. 8

    Caldwell, M.A. et al. Growth factors regulate the survival and fate of cells derived from human neurospheres. Nat. Biotechnol. 19, 475–479 (2001).

  9. 9

    Svendsen, C.N. et al. Long-term survival of human central nervous system progenitor cells transplanted into a rat model of Parkinson's disease. Exp. Neurol. 148, 135–146 (1997).

  10. 10

    Thomson, J.A. et al. Embryonic stem cell lines derived from human blastocysts. Science 282, 1145–1147 (1998).

  11. 11

    Reubinoff, B.E. et al. Neural progenitors from human embryonic stem cells. Nat. Biotechnol. 19, 1134–1140 (2001).

  12. 12

    Zufferey, R., Nagy, D., Mandel, R.J., Naldini, L. & Trono, D. Multiply attenuated lentiviral vector achieves efficient gene delivery in vivo . Nat. Biotechnol. 15, 871–875 (1997).

  13. 13

    May, C. et al. Therapeutic haemoglobin synthesis in beta-thalassaemic mice expressing lentivirus-encoded human beta-globin. Nature 406, 82–86 (2000).

  14. 14

    Perrier, A.L. et al. Derivation of midbrain dopamine neurons from human embryonic stem cells. Proc. Natl. Acad. Sci. USA 101, 12543–12548 (2004).

  15. 15

    Gensert, J.M. & Goldman, J.E. Endogenous progenitors remyelinate demyelinated axons in the adult CNS. Neuron 19, 197–203 (1997).

  16. 16

    West, M.J. Design-based stereological methods for counting neurons. Prog. Brain Res. 135, 43–51 (2002).

  17. 17

    West, M.J. Design based stereological methods for estimating the total number of objects in histological material. Folia Morphol. (Warsz.) 60, 11–19 (2001).

  18. 18

    Studer, L. Stem cells with brainpower. Nat. Biotechnol. 19, 1117–1118 (2001).

  19. 19

    Doetsch, F., Caille, I., Lim, D.A., Garcia-Verdugo, J.M. & Alvarez-Buylla, A. Subventricular zone astrocytes are neural stem cells in the adult mammalian brain. Cell 97, 703–716 (1999).

  20. 20

    Monje, M.L., Toda, H. & Palmer, T.D. Inflammatory blockade restores adult hippocampal neurogenesis. Science 302, 1760–1765 (2003).

  21. 21

    Suhonen, J.O., Peterson, D.A., Ray, J. & Gage, F.H. Differentiation of adult hippocampus-derived progenitors into olfactory neurons in vivo . Nature 383, 624–627 (1996).

  22. 22

    Petreanu, L. & Alvarez-Buylla, A. Maturation and death of adult-born olfactory bulb granule neurons: role of olfaction. J. Neurosci. 22, 6106–6113 (2002).

  23. 23

    Doetsch, F., GarciaVerdugo, J.M. & AlvarezBuylla, A. Cellular composition and three-dimensional organization of the subventricular germinal zone in the adult mammalian brain. J. Neurosci. 17, 5046–5061 (1997).

  24. 24

    Medvinsky, A. & Smith, A. Stem cells: fusion brings down barriers. Nature 422, 823–825 (2003).

  25. 25

    Alvarez-Dolado, M. et al. Fusion of bone-marrow-derived cells with Purkinje neurons, cardiomyocytes and hepatocytes. Nature 425, 968–973 (2003).

  26. 26

    Weimann, J.M., Johansson, C.B., Trejo, A. & Blau, H.M. Stable reprogrammed heterokaryons form spontaneously in Purkinje neurons after bone marrow transplant. Nat. Cell Biol. 5, 959–966 (2003).

  27. 27

    Reubinoff, B.E., Pera, M.F., Fong, C.Y., Trounson, A. & Bongso, A. Embryonic stem cell lines from human blastocysts: somatic differentiation in vitro . Nat. Biotechnol. 18, 399–404 (2000).

  28. 28

    Zhang, S.C., Wernig, M., Duncan, I.D., Brustle, O. & Thomson, J.A. In vitro differentiation of transplantable neural precursors from human embryonic stem cells. Nat. Biotechnol. 19, 1129–1133 (2001).

Download references


We thank R. McKay for the nestin antibody, S. Anderson and J. Rubenstein for the Dlx2 antibody and M. Leversha for the DNA probes and assistance with GISH. Supported by the National Institute of Neurological Disorders and Stroke, NIH, R21NS046045, the Michael W. McCarthy Foundation, the M.J. Fox Foundation, and the Kinetics Foundation. M.S. is supported by NIH grants HL57612 and CA08748.

Author information


  1. Developmental Biology, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, 10021, New York, USA

    • Viviane Tabar
    • , Georgia Panagiotakos
    • , Edward D Greenberg
    • , Bill K Chan
    •  & Lorenz Studer
  2. Neurosurgery, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, 10021, New York, USA

    • Viviane Tabar
    • , Georgia Panagiotakos
    • , Edward D Greenberg
    • , Bill K Chan
    • , Philip H Gutin
    •  & Lorenz Studer
  3. Medicine, Memorial Sloan Kettering Cancer Center, 1275 York Ave, New York, 10021, New York, USA

    • Michel Sadelain


  1. Search for Viviane Tabar in:

  2. Search for Georgia Panagiotakos in:

  3. Search for Edward D Greenberg in:

  4. Search for Bill K Chan in:

  5. Search for Michel Sadelain in:

  6. Search for Philip H Gutin in:

  7. Search for Lorenz Studer in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to Viviane Tabar.

Supplementary information

  1. Supplementary Fig. 1

    GFP and hNA colocalization. (PDF 207 kb)

  2. Supplementary Fig. 2

    Three-dimensional reconstruction of 0.5 μm confocal sections of human cells in vivo. (PDF 298 kb)

  3. Supplementary Fig. 3

    Immunohistochemical profile of hES cell progeny in vivo. (PDF 228 kb)

  4. Supplementary Fig. 4

    Split multichannel images of the confocal panels shown in Supplementary Figure 2. (PDF 306 kb)

  5. Supplementary Fig. 5

    No evidence of cell fusion. (PDF 131 kb)

About this article

Publication history




Issue Date



Further reading