Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Exponential Amplification of Recombinant- RNA Hybridization Probes

Abstract

We have synthesized recombinant RNA molecules that function both as hybridization probes and as templates for exponential amplification by Qβ replicase. Each recombinant consists of a sequence specific for the protozoan parasite, Plasmodium falciparum, embedded within the sequence of MDV-1 RNA, which is a natural template for Qβ replicase. The probe sequence was inserted within a hairpin loop that occurs on the exterior of MDV-1 RNA. The recombinant RNAs hybridize specifically to complementary DNA, despite topological constraints on the probe domain, are replicated at the same rate as MDV-1 RNA, despite their additional length, and are able to serve as templates for the synthesis of a large number of RNA copies. A Qβ replicase reaction initiated with only 0.14 femtograms of recombinant RNA (1,000 molecules) can produce 129 nanograms of recombinant RNA product in 30 minutes. This represents a one-billion fold amplification. Our results demonstrate the feasibility of employing exponentially replicatable RNAs in bioassays, where they would serve the dual role of specific probe and amplifiable reporter.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Gillespie, D. and Spiegelman, S. 1965. A quantitative assay for DNA-RNA hybrids with DNA immobilized on a membrane. J. Mol. Biol. 12:829–842.

    Article  CAS  Google Scholar 

  2. Saiki, R.K., Scharf, S., Faloona, F., Mullis, K.B., Horn, G.T., Erlich, H.A., and Arnheim, N. 1985. Enzymatic amplification of β-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science 230:1350–1354.

    Article  CAS  Google Scholar 

  3. Saiki, R.K., Gelfand, D.H., Stoffel, S., Scharf, S.J., Higuchi, R., Horn, G.T., Mullis, K.B., and Erlich, H.A. 1988. Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491.

    Article  CAS  Google Scholar 

  4. Erlich, H.A., Gelfand, D.H., and Saiki, R.K. 1988. Specific DNA amplification. Nature 331:461–462.

    Article  Google Scholar 

  5. Chu, B.C.F., Kramer, F.R., and Orgel, L.E. 1986. Synthesis of an amplifiable reporter RNA for bioassays. Nucleic Acids Res. 14:5591–5603.

    Article  CAS  Google Scholar 

  6. Miele, E.A., Mills, D.R., and Kramer, F.R. 1983. Autocatalytic replication of a recombinant RNA. J. Mol. Biol. 171:281–295.

    Article  CAS  Google Scholar 

  7. Haruna, I. and Spiegelman, S. 1965. Specific template requirements of RNA replicases. Proc. Natl. Acad. Sci. USA 54:579–587.

    Article  CAS  Google Scholar 

  8. Haruna, I. and Spiegelman, S. 1965. Autocatalytic synthesis of a viral RNA in vitro. Science 150:884–886.

    Article  CAS  Google Scholar 

  9. Kramer, F.R., Mills, D.R., Cole, P.E., Nishihara, T., and Spiegelman, S. 1974. Evolution in vitro: sequence and phenotype of a mutant RNA resistant to ethidium bromide. J. Mol. Biol. 89:719–736.

    Article  CAS  Google Scholar 

  10. Weissmann, C., Feix, G., and Slor, H. 1968. In vitro synthesis of phage RNA: the nature of the intermediates. Cold Spring Harbor Symp. Quant. Biol. 33:83–100.

    Article  CAS  Google Scholar 

  11. Spiegelman, S., Pace, N.R., Mills, D.R., Levisohn, R., Eikhom, T.S., Taylor, M.M., Peterson, R.L., and Bishop, D.H.L. 1968. The mechanism of RNA replication. Cold Spring Harbor Symp. Quant. Biol. 33:101–124.

    Article  CAS  Google Scholar 

  12. Dobkin, C., Mills, D.R., Kramer, F.R., and Spiegelman, S. 1979. RNA replication: required intermediates and the dissociation of template, product, and Qβ replicase. Biochemistry 18:2038–2044.

    Article  CAS  Google Scholar 

  13. Haruna, I. and Spiegelman, S. 1965. Recognition of size and sequence by an RNA replicase. Proc. Natl. Acad. Sci. USA 54:1189–1193.

    Article  CAS  Google Scholar 

  14. Levisohn, R. and Spiegelman, S. 1968. The cloning of a self-replicating RNA molecule. Proc. Natl. Acad. Sci. USA 60:866–872.

    Article  CAS  Google Scholar 

  15. Kacian, D.L., Mills, D.R., Kramer, F.R., and Spiegelman, S. 1972. A replicating RNA molecule suitable for a detailed analysis of extracellular evolution and replication. Proc. Natl. Acad. Sci. USA 69:3038–3042.

    Article  CAS  Google Scholar 

  16. Klotz, G., Kramer, F.R., and Kleinschmidt, A.K. 1980. Conformational details of partially base-paired small RNAs in the nanometer range. Electron Microscopy 2:530–531.

    CAS  Google Scholar 

  17. Mills, D.R., Kramer, F.R., Dobkin, C., Nishihara, T., and Cole, P.E. 1980. Modification of cytidines in a Qβ replicase template: analysis of conformation and localization of lethal nucleotide substitutions. Bio chemistry 19:228–236.

    CAS  Google Scholar 

  18. Kramer, F.R. and Mills, D.R. 1981. Secondary structure formation during RNA synthesis. Nucleic Acids Res. 19:5109–5124.

    Article  Google Scholar 

  19. Mills, D.R., Dobkin, C., and Kramer, F.R. 1978. Template-determined, variable rate of RNA chain elongation. Cell 15:541–550.

    Article  CAS  Google Scholar 

  20. Nishihara, T., Mills, D.R., and Kramer, F.R. 1983. Localization of the Qβ replicase recognition site in MDV-1 RNA. J. Biochem. 93:669–674.

    Article  CAS  Google Scholar 

  21. Priano, C., Kramer, F.R., and Mills, D.R. 1987. Evolution of the RNA coliphages: the role of secondary structures during RNA replication. Cold Spring Harbor Symp. Quant. Biol. 52:321–330.

    Article  CAS  Google Scholar 

  22. Franzén, L., Westin, G., Shabo, R., Åslund, L., Perlmann, H., Persson, T., Wigzell, H., and Pettersson, U. 1984. Analysis of clinical specimens by hybridization with probe containing repetitive DNA from Plasmodium falciparum. A novel approach to malaria diagnosis. Lancet 1:525–528.

    Article  Google Scholar 

  23. Åslund, L., Franzén, L., Westin, G., Persson, T., Wigzell, H., and Pettersson, U. 1985. Highly reiterated non-coding sequence in the genome of Plasmodium falciparum is composed of 21 base-pair tandem repeats. J. Mol. Biol. 185:509–516.

    Article  Google Scholar 

  24. Zolg, J.W., Andrade, L.E., and Scott, E.D. 1987. Detection of Plasmodium falciparum DNA using repetitive DNA clones as species specific probes. Mol. Biochem. Parasitol. 22:145–151.

    Article  CAS  Google Scholar 

  25. Zuker, M. and Stiegler, P. 1981. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Res. 9:133–148.

    Article  CAS  Google Scholar 

  26. Mills, D.R., Kramer, F.R., and Spiegelman, S. 1973. Complete nucleotide sequence of a replicating RNA molecule. Science 180:916–927.

    Article  CAS  Google Scholar 

  27. Bausch, J.N., Kramer, F.R., Miele, E.A., Dobkin, C., and Mills, D.R. 1983. Terminal adenylation in the synthesis of RNA by Qβ replicase. J. Biol. Chem. 258:1978–1984.

    CAS  PubMed  Google Scholar 

  28. Eoyang, L. and August, J.T. 1971. Qβ RNA polymerase from phage Qβ-infected E. coli, p. 829–839. In: Procedures in Nucleic Acid Research, Volume 2. Cantoni, G. L. and Davis, D. R. (eds.). Harper and Row, New York.

    Google Scholar 

  29. Hill, D. and Blumenthal, T. 1983. Does Qβ replicase synthesize RNA in the absence of template? Nature 301:350–352.

    Article  CAS  Google Scholar 

  30. Biebricher, C.K., Diekmann, S., and Luce, R. 1982. Structural analysis of self-replicating RNA synthesized by Q-beta replicase. J. Mol. Biol. 154:629–648.

    Article  CAS  Google Scholar 

  31. Gait, M.J. 1984. Oligonucleotide Synthesis. IRL Press, Oxford, UK.

  32. Matthes, H.W.D., Zenke, W.M., Grundström, T., Staub, A., Wintzerith, M., and Chambon, P. 1984. Simultaneous rapid chemical synthesis of over one hundred oligonucleotides on a microscale. EMBO J. 3:801–805.

    Article  CAS  Google Scholar 

  33. Lo, K.-M., Jones, S.S., Hackett, N.R., and Khorana, H.G. 1984. Specific amino acid substitution in bacterioopsin: replacement of a restriction fragment in the structural gene by synthetic DNA fragments containing altered codons. Proc. Natl. Acad. Sci. USA 81:2285–2289.

    Article  CAS  Google Scholar 

  34. Sanger, F., Nicklen, S., and Coulson, A.K. 1977. DNA sequencing with chain-terminating inhibitors. Proc. Natl. Acad. Sci. USA 74:5463–5467.

    Article  CAS  Google Scholar 

  35. Mizusawa, S., Nishimura, S., and Seela, F. 1986. Improvement of the dideoxy chain termination method of DNA sequencing by use of deoxy-7-deazaguanosine triphosphate in place of GTP. Nucleic Acids Res. 14:1319–1324.

    Article  CAS  Google Scholar 

  36. Biggin, M.D., Gibson, T.J., and Hong, G.F. 1983. Buffer gradient gels and 35S label as an aid to rapid DNA sequence determination. Proc. Natl. Acad. Sci. USA 80:3963–3965.

    Article  CAS  Google Scholar 

  37. Wallace, R.B., Johnson, M.J., Suggs, S.V., Miyoshi, K., Bhatt, R., and Itakura, K. 1981. A set of synthetic oligodeoxyribonucleotide primers for DNA sequencing in the plasmid vector pBR322. Gene 16:21–26.

    Article  CAS  Google Scholar 

  38. Osterman, H.L. and Coleman, J.E. 1981. T7 ribonucleic acid polymerase-promoter interactions. Biochemistry 20:4885–4892.

    Article  Google Scholar 

  39. Holmes, D.S. and Quigley, M. 1981. A rapid boiling method for the preparation of bacterial plasmids. Anal. Biochem. 114:193–197.

    Article  CAS  Google Scholar 

  40. Bywater, M., Bywater, R., and Hellman, L. 1983. A novel chromatographic procedure for purification of bacterial plasmids. Anal. Bio chem. 132:219–224.

    CAS  Google Scholar 

  41. Axelrod, V.D., and Kramer, F.R. 1985. Transcription from bacteriophage T7 and SP6 RNA polymerase promoters in the presence of 3′-deoxyribonucleoside 5′-tnphosphate chain terminators. Biochemistry 24:5716–5723.

    Article  CAS  Google Scholar 

  42. Tullis, R.H., and Rubin, H. 1980. Calcium protects DNase I from proteinase K: a new method for the removal of contaminating RNase from DNase I. Anal. Biochem. 107:260–264.

    Article  CAS  Google Scholar 

  43. Maniatis, T., Jeffrey, A., and van deSande, H. 1975. Chain length determination of small double-and single-stranded DNA molecules by polyacrylamide gel electrophoresis. Biochemistry 14:3787–3794.

    Article  CAS  Google Scholar 

  44. Sammons, D.W., Adams, L.D., and Nishizawa, E.E. 1981. Ultrasensitive silver-based color staining of polypeptides in polyacrylamide gels. Electrophoresis 2:135–141.

    Article  CAS  Google Scholar 

  45. Maxwell, I.H., Van Ness, J., and Hahn, W.E. 1978. Assay of DNA-RNA hybrids by Sl-nuclease digestion and adsorption to DEAE-cellulose filters. Nucleic Acids Res. 5:2033–2038.

    Article  CAS  Google Scholar 

  46. Kafatos, F.C., Jones, C.W., and Efstratiadis, A. 1979. Determination of nucleic acid sequence homologies and relative concentrations by a dot hybridization procedure. Nucleic Acids Res. 7:1541–1552.

    Article  CAS  Google Scholar 

  47. Ranki, M., Palva, A., Virtanen, M., Laaksonen, M., and Söderlund, H. 1983. Sandwich hybridization as a convenient method for detection of nucleic acids in crude samples. Gene 21:77–85.

    Article  CAS  Google Scholar 

  48. Synänen, A.-C., Laaksonen, M., and Söderlund, H. 1986. Fast quantification of nucleic acid hybrids by affinity-based hybrid collection. Nucleic Acids Res. 14:5037–5048.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lizardi, P., Guerra, C., Lomeli, H. et al. Exponential Amplification of Recombinant- RNA Hybridization Probes. Nat Biotechnol 6, 1197–1202 (1988). https://doi.org/10.1038/nbt1088-1197

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1088-1197

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing