Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Applications of Biotechnology to the Production, Recovery and Use of Marine Polysaccharides

Abstract

Marine polysaccharides are being increasingly used in coatings, adhesives, feed stocks, substrates, foods, pharmaceuticals and biotechnological separations, as the gene pools of marine bacteria are tapped by recombinant DNA technology to increase polysaccharide yield. Two examples include polysaccharide adhesive viscous exopolymer (PAVE) genes from a novel marine bacterium, LST, and chitobiose genes from Vibrio vulnificus. Polyclonal and monoclonal antibodies are used to identify, fix and purify important marine polysaccharides. Marine sciences merged with new technologies will generate new adhesives, pharmaceuticals, drag reducers and foods from the sea.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Sutherland, I.W. 1980. Polysaccharides in the adhesion of marine and freshwater bacteria, p. 329–338. In: Microbial Adhesion to Surfaces R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent (eds.). Ellis Horwood Publ., Chichester, UK.

    Google Scholar 

  2. Curtin, M.E. 1985. Chemicals from the sea. Bio/Technology 3: 34–37.

    Google Scholar 

  3. Weiner, R.M., Segall, A. and Colwell, R.R. 1985. Characterization of a marine bacterium associated with Crassostrea virginica. J. Appl. Environ. Microbiol. 49: 83–90.

    CAS  Google Scholar 

  4. Sandford, P.A., Pittsley, J.E., Knutson, C.A., Watson, P.R., Cadmus, M.C. and Jeanes, A. 1977. Variation in Xanthomonas campestris NRRL B-1459: Characterization of Xanthan Products of Differing Pyruvic Acid Content, p. 192–209. In: Microbial Extracellular Polysaccharides. A. I. Laskin (ed.). Washington, D.C.

    Chapter  Google Scholar 

  5. Rha, C.K., Rodriguez-Sanchez, D. and Kienzle-Sterzer, C. 1985. Novel applications of chitosan. In: Biotechnology of Marine Polysaccharides, p. 283–312. R. R. Colwell, E. R. Pariser and A. J. Sinskey, (eds.). McGraw Hill, New York.

    Google Scholar 

  6. Fazio, S.A., Uhlinger, D.J., Parker, J.H. and White, D.C. 1982. Estimations of uronic acids as quantitative measures of extracellular and cell wall polysaccharides polymers from environmental samples. Appl. Environ. Microbiol. 43: 1151–1159.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Uhlinger, D.J. and White, D.C. 1983. Extracellular polysaccharide glycocaly in Pseudamonas atlantica. Appl. Environ. Microbiol. 45: 64–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Boyle, C.D. and Reade, A.E. 1983. Characterization of 2 extracellular polysaccharides from marine bacteria. Appl. Environ. Microbiol. 46: 392–399.

    CAS  PubMed  PubMed Central  Google Scholar 

  9. Rolla, G. 1980. On the chemistry of the matrix of dental plaque, p. 425–439. In: Microbial Adhesion to Surfaces R. C. W. Berkeley, J. M. Lynch, J. Melling, P. R. Rutter, and B. Vincent (eds.). Ellis Horwood Publ., Chichester, UK.

    Google Scholar 

  10. William, C.A. and Chase, M.W. 1967. Methods in Immunology and Immunochemistry. Academic Press, New York.

    Google Scholar 

  11. Kohler, G. 1981. The technique of hybridoma production, p. 285–298. In: Immunological Methods, Vol. 2. I. Lefkovits, and B. Pernis (eds.). Academic Press, New York.

    Chapter  Google Scholar 

  12. Kennett, R.H., McKearn, T.J. and Bechtol, K.B. 1980. Monoclonal Antibodies. Hybridomas: A New Dimension in Biological Analyses. Plenum Press, New York.

    Book  Google Scholar 

  13. Yelton, D.E., Margulies, D.J., Diamond, B. and Scharff, M.D. 1980. Plasmacytomas and Hybridomas: Development and Application, p. 3–17. In: Monoclonal Antibodies R. H. Kennett, T. J. McKern, and K. B. Bechtol (eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  14. Zaidi, Bard, R.F. and Tosteson, T.R. 1984. Microbial specificity of metallic surfaces exposed to ambient seawater. Appl. and Environ. Microbiol. 48: 519–524.

    CAS  Google Scholar 

  15. Zambon, J.S., Huber, P.S., Meyer, A.E., Slots, J., Fornalik, M.S. and Baier, R.E. 1984. In situ identification of bacterial species in marine microfouling films using an immunoflourescence technique. Appl. and Environ. Microbiol. 48: 1214–1220.

    CAS  Google Scholar 

  16. Voller, A., Bidwell, D.C. and Bartlett, A. 1979. The enzyme linked immunosorbent assay (ELISA). A guide with abstracts of microplate applications. Dynatech Laboratories, Inc. Publication 125 p.

    Google Scholar 

  17. Takshio, M. and Okami, Y. 1982. Screening of a dextran sucrose E.C.-24:15. Inhibitor. Agric. Biol. Chem. 46: 1457–1464.

    Google Scholar 

  18. El-Sayed, M.M. 1982. The polysaccharides of the brown seaweed, Turbinaria. Murrayana. Carbohydr. Res. 110: 277–282.

    Article  CAS  Google Scholar 

  19. Corpe, W.A. 1970. An acid polysaccharide produced by primary film-forming bacteria. Develop. Ind. Microbiol. 11: 402–412.

    Google Scholar 

  20. Shaw, K.J. and Berg, C.M. 1979. Escherichia coli K12 auxotrophs reduced by the insertion of the transposable element Tn5. Genetics 92: 741–747.

    CAS  PubMed  PubMed Central  Google Scholar 

  21. Kleckner, N., Rother, J. and Bostein, D. 1977. Genetic engineering in vivo using translocatable drug resistance elements. J. Mol. Biol. 116: 125–159.

    Article  CAS  PubMed  Google Scholar 

  22. Maniatis, T.M., Fritsch, E.F. and Sanbrook, J. 1982. Molecular Cloning: A Laboratory Manual. Cold Spring Harbor Laboratory, N.Y.

    Google Scholar 

  23. Vieira, J. and Messing, J. The pUC plasmids, and M13mp7-derived system for insertion mutagenesis and sequencing with synthetic universal primers. Gene 19: 259–268.

    Article  CAS  PubMed  Google Scholar 

  24. Clark, W.B. and Gibbons, R.J. 1977. Influence of salivary components and extracellular polysaccharide synthesis from sucrose on the attachment of Streptococcus mutans 6715 to hydroxyapatite surfaces. Infect. Immunity 18: 514–523.

    CAS  Google Scholar 

  25. Danielsson, A., Norkrans, B. and Bjornsson, A. 1977. On bacterial adhesion—the effect of certain enzymes on adhered cells of a marine Pseudomonas sp. Botan. Mar. 20: 13–17.

    CAS  Google Scholar 

  26. Weiner, R.M. 1985. Microbial films and invertebrate settlement and metamorphosis, p. 283–312. In: Biotechnology of Marine Polysaccharides. R. R. Colwell, E. R. Pariser and A. J. Sinskey (eds.). McGraw Hill, New York.

    Google Scholar 

  27. Soto-Gil, R.W. and Zyskind, J.W. 1984. Cloning of Vibrio harveyii chitinase genes in Escherichia coli, p. 169–177. In: Chitin, Chitosan and Related Enzymes. J. P. Zikakis (ed.). Academic Press, New York.

    Google Scholar 

  28. Corpe, W.A., Matsuuchi, L. and Armbruster, B. 1976. Secretion of adhesive polymers of marine bacteria to surfaces, p. 433–442. In: Proc. 3rd Int. Biodegradation Symp. J. M. Sharpley and A. M. Kaplan, (eds.). Applied Science Publ., London.

    Google Scholar 

  29. Lang, E.R. 1984. New techniques for the isolation and separation of polysaccharides, p. 431–452. In: Biotechnology of Marine Polysaccharides. R. R. Colwell, E. R. Pariser and A. J. Sinskey (eds.). McGraw Hill, New York.

    Google Scholar 

  30. Sanford, P.A. 1985. Applications of marine polysaccharides in the chemical industries. In: Biotechnology of Marine Polysaccharides, p. 431–452. R. R. Colwell, E. R. Pariser and A. J. Sinskey (eds.). McGraw Hill, New York.

    Google Scholar 

  31. Young, L.Y. and Mitchell, R. 1973. The role of microorganisms in marine fouling. Int. Biodeterior. Bull. 9: 105–109.

    Google Scholar 

  32. Meadows, P.S. and Williams, G.B. 1963. Settlement of Spirorbis borealis Daudin larve on surfaces bearing films of microorganisms. Nature 198: 610–611.

    Article  Google Scholar 

  33. Daniel, A. 1955. The primary film in settlement of marine foulers. J. Madras Univ. 25: 89–200.

    Google Scholar 

  34. Fletcher, M. and Marshall, K.C. 1982. Are solid surfaces of ecological significance to aquatic bacteria? p. 199–236. In: Adv. in Microbial Ecol. K. C. Marshall (ed.). Plenum Press, N.Y.

    Chapter  Google Scholar 

  35. Fletcher, M. and Floodgate, G.D. 1976. The adhesion of bacteria to solid surfaces, p. 101–107. In: Microbiol. Ultrastructure: The Use of the Electron Microscope R. Fuller and D. W. Lovelock (eds.). Academic Press, London.

    Google Scholar 

  36. Fletcher, M. and Floodgate, G.D. 1973. An electron-microscopic demonstration of an acidic polysaccharide involved in adhesion of a marine bacterium to solid surfaces. J. Gen. Microbiol. 74: 325–334.

    Article  CAS  Google Scholar 

  37. Colwell, R.R. 1985. Marine polysaccharides for pharmaceutical and microbiological applications, p. 363–376. In: Biotechnology of Marine Polysaccharies. R. R. Colwell, E. R. Pariser and A. J. Sinskey (eds.). McGraw Hill, New York.

    Google Scholar 

  38. Abu, G.D., Weiner, R.M., Bonar, D.B. and Colwell, R.R. 1985. Extracellular polysaccharide production by a marine bacterium. Int. Biodeterior. In press.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, R., Colwell, R., Jarman, R. et al. Applications of Biotechnology to the Production, Recovery and Use of Marine Polysaccharides. Nat Biotechnol 3, 899–902 (1985). https://doi.org/10.1038/nbt1085-899

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1085-899

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing