Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

The Translation of Scale in Fermentation Processes: The Impact of Computer Process Control

Abstract

Many of the physical and chemical parameters which influence the behavior of a microorganism are changed as the scale of operation is changed. A description is given of how the most important of these effect process performance. As well as opening up new doors for novel process control techniques, the introduction of computer process control and data acquisition have had a positive impact on all process development activities. Experimental batches in a pilot plant can now be run with greater precision than previously possible and a complete record is available of every event, both planned and unplanned, which occurs during the fermentation cycle.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Demain, A.L. 1981. Industrial microbiology. Science. 214: 987–995.

    Article  CAS  Google Scholar 

  2. Perlman, D. 1979. Microbial production of antibiotics. Microbial Technology. 1: 241–280.

    CAS  Google Scholar 

  3. Young, T.B. 1979. Environmental approach to scale-up. N. Y. Academy of Sciences. 326: 165–180.

  4. Murphy, T.M. Fermentor scale-up: A challenge of Biotechnology. 1982. Presented at the 83rd Annual American Society for Microbiology.

  5. Banks, G.T. 1979. Scale-up of fermentation processes, p. 177–266. In: Topics in Enzyme and Fermentation Biotechnology, Vol. 3, A. Wiseman, (ed.), Ellis Horward Limited, Chichester, England.

    Google Scholar 

  6. Young, T.B. and Koplove, H.M. 1972. A systems approach to design and control of antibiotic fermentations. Proc. IV IFS: Ferment. Technol. Today. 163–166.

  7. Brown, D.E. 1983. Scaling-up microbial processes. Chemtech. March, 1983: 164–169.

    Google Scholar 

  8. Aiba, S., Humphrey, A.E. and Millis, N.F. 1973. Biochemical Engineering. Academic Press. New York and London.

    Google Scholar 

  9. Blanch, H.W. and Bhavaraju, S.M. 1976. Non-newtonian fermentation broths: rheology and mass transfer. Biotechnol. Bioeng. 18: 745–790.

    Article  CAS  Google Scholar 

  10. Maxon, W.D. 1959. Aeration-agitation studies on the Novobiocin fermentation. Journal of Biochemical and Microbiological Technology and Engineering. 1: 311–324.

    Article  CAS  Google Scholar 

  11. Sobotka, M., Prokop, A., Dunn, I.J. and Einsele, E. 1982. Review of methods for the measurement of oxygen transfer in microbial systems. Annual Reports on Fermentation Processes. 5: 127–210.

    Article  CAS  Google Scholar 

  12. Yoshida, F. 1982. Aeration and mixing in fermentation. Annual Reports on Fermentation Processes. 5: 1–34.

    Article  CAS  Google Scholar 

  13. Oldshue, J.Y. 1983. Mixing in fermentation processes. Annual Reports on Fermentation Processes. 6: 75–99.

    Article  Google Scholar 

  14. Oldshue, J.Y. 1966. Fermentation mixing scale-up techniques. Biotechnol. Bioeng. 8: 3–24.

    Article  Google Scholar 

  15. Metzner, A.B. and Otto, R.E. 1957. Agitation of non-newtonian fluids. A.l.Ch.E. 3: 3–10.

    Article  CAS  Google Scholar 

  16. Wang, D. and Humphrey, A.E. 1968. Developments in agitation and aeration of fermentation systems. Progress in Industrial Microbiology. 8: 1–34.

    CAS  PubMed  Google Scholar 

  17. Wang, D.I.-C and Fewkes, R.C.J. 1977. Effect of operating and geometric parameters on the behavior of non-Newtonian, mycelial antibiotic fermentations. Dev. Ind. Microbial. 18: 39–56.

    Google Scholar 

  18. Lilly, M.D. 1984. Problems in process scale-up, p. 79–89. In: Bioactive Microbial Products II, L. J. Nisbet, (ed.), Academic Press, London.

    Google Scholar 

  19. Steel, P. and Maxon, W.D. 1962. Some effects of turbine size on Novobiocin fermentations. Biotechnol. Bioeng. 4: 231–240.

    Article  Google Scholar 

  20. Jansen, P.H., Slott, S. and Gurtler, H. 1978. Determination of mixing times in large fermentors using radioactive isotopes. Proc. 1st Eur. Cong. Biotechnol., Part II, 80–82.

    Google Scholar 

  21. Manfredini, R., Cavallera, V., Marini, L. and Donati, G. 1983. Mixing and oxygen transfer in conventional stirred fermentors. Biotechnol. Bioeng. 25: 3115–3131.

    Article  CAS  Google Scholar 

  22. Varder, F. and Lilly, M.D. 1982. Effect of cycling dissolved oxygen concentrations on product formation in penicillin fermentations. Eur. J. Appl. Microbiol. Biotechnol. 14: 203–211.

    Article  Google Scholar 

  23. Varder, F. 1983. Problems of mass and momentum transfer in large fermentors. Process Biochemistry. October, 1983: 21–23.

    Google Scholar 

  24. Senior, P.J. and Windass, J. 1980. The ICI single cell protein process. Biotechnology Letters. 2: 205–210.

    Article  CAS  Google Scholar 

  25. Paul, E.L. and Treybal, R.E. 1971. Mixing and product distribution for a liquid-phase, second-order, competitive-consecutive reaction. A. l. Ch. E. Journal,. 17: 718–724.

    Article  CAS  Google Scholar 

  26. Buckland, B.C. and R.K. Stafford 1980. Antibiotic fermentation: effect of process scale on the morphology and metabolism of a pseudomycelial organism. Presented at the Sixth International Fermentation Symposium, London, Canada.

    Google Scholar 

  27. Metz, B., de Bruijn, E.W. and van Suijdan, J.C. 1981. Method for quantitative representation of the morphology of molds. Biotechnol. Bioeng. 23: 149–162.

    Article  Google Scholar 

  28. Van Suijdan, J.C., Kossen, N.W.F. and Paul, P.G. 1980. An inoculum technique for the production of fungal pellets. European J. Appl. Microbiol. Biotechnol. 10: 211–221.

    Article  Google Scholar 

  29. Van Suijdan, J.C. and Metz, B. 1981. Influence of engineering variables upon the morphology of filamentous molds. Biotechnol. and Bioeng. 23: 111–148.

    Article  Google Scholar 

  30. Alford, J.S. 1982. Evolution of the fermentation computer system at Eli Lilly and Co. Computer applications in fermentation technology. London: Society of Chemical Industry. 67–74.

    Google Scholar 

  31. Buckland, B.C. and Fasten, H. 1982. Analysis of fermentation exhaust gas using a mass spectrometer. Computer applications in fermentation technology. London: Society of Chemical Industry. 119–126.

    Google Scholar 

  32. Ryu, D.Y. and Oldshue, J.Y. 1977. A reassessment of mixing cost in fermentation processes. Biotechnol. Bioeng. 19: 621–629.

    Article  CAS  Google Scholar 

  33. Kappli, O. and Fiechter, A. 1981. A convenient method for the determination of oxygen solubility in different solutions. Biotechnology and Bioeng. 23: 1897–1901.

    Article  Google Scholar 

  34. Huang and Bungay. 1973. Biotechnol. Bioeng. 15: 1193.

    Article  CAS  Google Scholar 

  35. Einsele, A. 1978. Scaling-up bioreactors. Process Biochemistry. July, 13–14.

    Google Scholar 

  36. Midler, M. Jr. and Finn, R.K. 1966. A model system for evaluating shear in the design of stirred fermentors. Biotechnol. Bioeng. 8: 71–84.

    Article  Google Scholar 

  37. Corbett, K. 1980. Preparation, sterilization and design of media. Br. Mycol. Soc. Symp. Ser. 3: 25–41.

    CAS  Google Scholar 

  38. Buckland, B.C., Omstead, D., Santamarina, V. In press. Novel β-lactam antibiotics. In: Comprehensive Biotechnology, Vol. 2. M. Moo-Young, (ed.), Pergamon, Oxford.

  39. Anderson, C., Le Grys, G.A. and Solomons, G.L. 1982. Concepts in the design of large-scale fermentors for viscous culture broths. The Chemical Engineer. February, 1982: 43–49.

    Google Scholar 

  40. Calderbank, P.H. and Moo-Young, M.B. 1959. The prediction of power consumption in the agitation of non-Newtonian fluids. Trans. Instr. Chem. Engrs. 37: 26–33.

    Google Scholar 

  41. Oldshue, J.Y. 1981. Let's understand mixing. Chemtech. 11: 554–561.

    CAS  Google Scholar 

  42. Calderbank, P.H., Moo-Young, M.D. 1961. The power characteristics of agitators for the mixing of Newtonian and non-Newtonian fluids. Trans. Instr. Chem. Engrs. 39: 337–347.

    CAS  Google Scholar 

  43. Metzner, A.B., Feehs, R.H., Ramors, H.L., Otto, R.E. and Tuthill, J.D. 1961. A. I. Ch. E. 7: 3–11.

    Article  CAS  Google Scholar 

  44. Bull, D.N. 1983. Fermentation and genetic engineering: problems and prospects. Bio/Technology. 1: 847–855.

    Article  CAS  Google Scholar 

  45. Bull, D.N. 1983. Automation and optimization of fermentation processes. Annu. Rep. Ferment. Processes. 6: 359–375.

    Article  CAS  Google Scholar 

  46. Wu, J. and Lee, S.E. 1983. Engineering aspects in designing recombinant DNA fermentation facility. A. C. S. Division of Microbial and Biochemical Technology. Symposium.

  47. Paul, E.L., Kaufman, A. and Sklarz, W.A. 1981. An industrial approach to integrated fermentation/isolation process development. Ann. N. Y. Acad. Sci. 369: 181–186.

    Article  CAS  Google Scholar 

  48. Deindoerfer, F.H. and Humphrey, A.E. 1960. Scale-up of heat sterilization operations. Journal of Applied Microbiology. 8: 134–139.

    Google Scholar 

  49. Bartholomew, W.H. 1960. Scale-up of submerged fermentations. Journal of Applied Microbiology. 9: 289–300.

    Article  Google Scholar 

  50. Buckland, B.C., Lilly, M.D. and Dunnill, P. 1976. The kinetics of cholesterol oxidase synthesis by Nocardia rhodocrous . Biotechnol. Bioeng. 18: 601–621.

    Article  CAS  Google Scholar 

  51. Gray, P.P., Dunnill, P. and Lilly, M.D. 1972. The continuous flow isolation of enzymes. Proc. IV 1FS: Ferment. Technol. Today, 347–351.

  52. Buckland, B.C., Richmond, W., Dunnill, P. and Lilly, M.D. 1974. The large-scale isolation of intracellular microbial enzymes: cholesterol oxidase from Nocardia, p. 65–79. In: Industrial Aspects of Biochemistry, B. Spencer, (ed.), Federation of European Biochemical Societies, Amsterdam.

    Google Scholar 

  53. Fish, N.M. and Lilly, M.D. 1984. The interactions between fermentation and protein recovery. Bio/Technology. 2: 623–627.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Buckland, B. The Translation of Scale in Fermentation Processes: The Impact of Computer Process Control. Nat Biotechnol 2, 875–883 (1984). https://doi.org/10.1038/nbt1084-875

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1084-875

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing