Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Infrared spectroscopic imaging for histopathologic recognition


The process of histopathology, comprising tissue staining and morphological pattern recognition, has remained largely unchanged for over 140 years1. Although it is integral to clinical and research activities, histopathologic recognition remains a time-consuming, subjective process to which only limited statistical confidence can be assigned because of inherent operator variability2,3. Although immunohistochemical approaches allow limited molecular detection, significant challenges remain in using them for quantitative, automated pathology. Vibrational spectroscopic approaches, by contrast, directly provide nonperturbing molecular descriptors4, but a practical spectroscopic protocol for histopathology is lacking. Here we couple high-throughput Fourier transform infrared (FTIR) spectroscopic imaging5 of tissue microarrays6 with statistical pattern recognition of spectra indicative of endogenous molecular composition and demonstrate histopathologic characterization of prostatic tissue. This automated histologic segmentation is applied to routine archival tissue samples, incorporates well-defined tests of statistical significance7 and eliminates any requirement for dyes or molecular probes. Finally, we differentiate benign from malignant prostatic epithelium by spectroscopic analyses.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Chemical staining and infrared spectroscopic characterization of prostate tissue.
Figure 2: Histology model and automated classification.
Figure 3: High-throughput validation of automated, objective tissue classification.
Figure 4: Adenocarcinoma prediction for samples.


  1. 1

    Luna, L.G. Manual of Histologic Staining Methods of the Armed Forces Institute of Pathology (McGraw-Hill, New York, 1968).

    Google Scholar 

  2. 2

    Allsbrook, W.C., Jr. et al. Interobserver reproducibility of Gleason grading of prostatic carcinoma: urologic pathologists. Hum. Pathol. 32, 74–80 (2001).

    Article  Google Scholar 

  3. 3

    Emmert-Buck, M.R. et al. Molecular profiling of clinical tissue specimens—feasibility and applications. Am. J. Pathol. 156, 1109–1115 (2000).

    CAS  Article  Google Scholar 

  4. 4

    Diem, M. et al. A decade of vibrational micro-spectroscopy of human cells and tissue (1994–2004). Analyst 129, 880–885 (2004).

    CAS  Article  Google Scholar 

  5. 5

    Lewis, E.N. et al. Fourier-transform spectroscopic imaging using an infrared focal-plane array detector. Anal. Chem. 67, 3377–3381 (1995).

    CAS  Article  Google Scholar 

  6. 6

    Kononen, J. et al. Tissue microarrays for high-throughput molecular profiling of tumor specimens. Nat. Med. 4, 844–847 (1998).

    CAS  Article  Google Scholar 

  7. 7

    Baak, J.P.A. The framework of pathology: Good Laboratory Practice by quantitative and molecular methods. J. Pathol. 198, 277–283 (2002).

    Article  Google Scholar 

  8. 8

    Jackson, M. & Mantsch, H.H. The medical challenge to infrared spectroscopy. J. Mol. Struct. 408, 105–111 (1997).

    Article  Google Scholar 

  9. 9

    Naumann, D., Helm, D. & Labischinski, H. Microbiological characterizations by FT-IR spectroscopy. Nature 351, 81–82 (1991).

    CAS  Article  Google Scholar 

  10. 10

    Wong, P.T.T., Wong, R.K., Caputo, T.A., Godwin, T.A. & Rigas, B. Infrared spectroscopy of exfoliated human cervical cells—evidence of extensive structural changes during carcinogenesis. Proc. Natl. Acad. Sci. USA 88, 10988–10992 (1991).

    CAS  Article  Google Scholar 

  11. 11

    Malins, D.C., Polissar, N.L. & Gunselman, S.J. Models of DNA structure achieve almost perfect discrimination between normal prostate, benign prostatic hyperplasia (BPH), and adenocarcinoma and have a high potential for predicting BPH and prostate cancer. Proc. Natl. Acad. Sci. USA 94, 259–264 (1997).

    CAS  Article  Google Scholar 

  12. 12

    Andrus, P.G.L. & Strickland, R.D. Cancer grading by Fourier transform infrared spectroscopy. Biospectroscopy 4, 37–46 (1998).

    CAS  Article  Google Scholar 

  13. 13

    Heise, H.M., Kupper, L. & Butvina, L.N. Bio-analytical applications of mid-infrared spectroscopy using silver halide fiber-optic probes. Spectrochim. Acta B 57, 1649–1663 (2002).

    Article  Google Scholar 

  14. 14

    Bhargava, R. & Levin, I.W. Fourier transform infrared imaging: theory and practice. Anal. Chem. 73, 5157–5167 (2001).

    CAS  Article  Google Scholar 

  15. 15

    Ou-Yang, H., Paschalis, E.P., Mayo, W.E., Boskey, A.L. & Mendelsohn, R. Infrared microscopic imaging of bone: spatial distribution of CO32−. J. Bone Miner. Res. 16, 893–900 (2001).

    CAS  Article  Google Scholar 

  16. 16

    Kidder, L.H., Kalasinsky, V.F., Luke, J.L., Levin, I.W. & Lewis, E.N. Visualization of silicone gel in human breast tissue using new infrared imaging spectroscopy. Nat. Med. 3, 235–237 (1997).

    CAS  Article  Google Scholar 

  17. 17

    Levin, I.W. & Bhargava, R. Fourier transform infrared vibrational spectroscopic imaging: integrating microscopy and molecular recognition. Annu. Rev. Phys. Chem. 56, 429–474 (2005).

    CAS  Article  Google Scholar 

  18. 18

    Wood, B.R. et al. Fourier transform infrared (FTIR) spectral mapping of the cervical transformation zone, and dysplastic squamous epithelium. Gynecol. Oncol. 93, 59–68 (2004).

    CAS  Article  Google Scholar 

  19. 19

    Malins, D.C. et al. The etiology and prediction of breast-cancer—Fourier transform-infrared spectroscopy reveals progressive alterations in breast DNA leading to a cancer-like phenotype in a high proportion of normal women. Cancer 75, 503–517 (1995).

    CAS  Article  Google Scholar 

  20. 20

    Boydston-White, S., Gopen, T., Houser, S., Bargonetti, J. & Diem, M. Infrared spectroscopy of human tissue. V. Infrared spectroscopic studies of myeloid leukemia (ML-1) cells at different phases of the cell cycle. Biospectroscopy 5, 219–227 (1999).

    CAS  Article  Google Scholar 

  21. 21

    Shaw, R.A., Guijon, F.B., Paraskevas, M., Ying, S.L. & Mantsch, H.H. Infrared spectroscopy of exfoliated cervical cell specimens—proceed with caution. Anal. Quant. Cytol. 21, 292–302 (1999).

    CAS  Google Scholar 

  22. 22

    Mansfield, J.R., McIntosh, L.M., Crowson, A.N., Mantsch, H.H. & Jackson, M. LDA-guided search engine for the nonsubjective analysis of infrared microscopic maps. Appl. Spectrosc. 53, 1323–1333 (1999).

    CAS  Article  Google Scholar 

  23. 23

    McIntosh, L.M. et al. Infrared spectra of basal cell carcinomas are distinct from non-tumor-bearing skin components. J. Invest. Dermatol. 112, 951–956 (1999).

    CAS  Article  Google Scholar 

  24. 24

    Webb, A.R. Statistical Pattern Recognition (John Wiley & Sons, New York, 2002).

    Book  Google Scholar 

  25. 25

    Goodacre, R. Explanatory analysis of spectroscopic data using machine learning of simple, interpretable rules. Vib. Spectrosc. 32, 33–45 (2003).

    CAS  Article  Google Scholar 

  26. 26

    Lasch, P. et al. Characterization of colorectal adenocarcinoma sections by spatially resolved FT-IR microspectroscopy. Appl. Spectrosc. 56, 1–9 (2002).

    CAS  Article  Google Scholar 

  27. 27

    Kwiatkoski, J.M. & Reffner, J.A. FT-IR microspectrometry advances. Nature 328, 837–838 (1987).

    Article  Google Scholar 

  28. 28

    Wetzel, D.L. & LeVine, S.M. Microspectroscopy—imaging molecular chemistry with infrared microscopy. Science 285, 1224–1225 (1999).

    CAS  Article  Google Scholar 

  29. 29

    Liotta, L.A. & Kohn, E.C. The microenvironment of the tumour-host interface. Nature 411, 375–379 (2001).

    CAS  Article  Google Scholar 

  30. 30

    Tuxhorn, J.A. et al. Reactive stroma in human prostate cancer: induction of myofibroblast phenotype and extracellular matrix remodeling. Clin. Cancer Res. 8, 2912–2923 (2002).

    CAS  PubMed  Google Scholar 

  31. 31

    Swets, J.A. Measuring the accuracy of diagnostic systems. Science 240, 1285–1293 (1988).

    CAS  Article  Google Scholar 

  32. 32

    Bradley, A.P. The use of the area under the ROC curve in the evaluation of machine learning algorithms. Pattern Recogn. 30, 1145–1159 (1997).

    Article  Google Scholar 

  33. 33

    Rubin, M.A. Use of laser capture microdissection, cDNA microarrays, and tissue microarrays in advancing our understanding of prostate cancer. J. Pathol. 195, 80–86 (2001).

    CAS  Article  Google Scholar 

Download references


We thank Kimberly Tuttle for technical assistance in preparing tissue microarrays and samples for spectroscopic imaging.

Author information



Corresponding author

Correspondence to Ira W Levin.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

H&E stained images and their corresponding classified images from two arrays demonstrating the validity of the approach for large populations. (PDF 740 kb)

Supplementary Fig. 2

Patient-matched benign and malignant samples visualized using conventional staining and spectroscopic segmentation. (PDF 245 kb)

Supplementary Table 1

Spectral biomarkers employed for spectroscopic histology. (PDF 10 kb)

Supplementary Table 2

Spectral biomarkers employed for distinguishing diseased from benign epithelial tissue. (PDF 12 kb)

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Fernandez, D., Bhargava, R., Hewitt, S. et al. Infrared spectroscopic imaging for histopathologic recognition. Nat Biotechnol 23, 469–474 (2005).

Download citation

Further reading


Quick links