Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Genetically enhanced cows resist intramammary Staphylococcus aureus infection

A Corrigendum to this article was published on 01 July 2005

This article has been updated

Abstract

Mastitis, the most consequential disease in dairy cattle, costs the US dairy industry billions of dollars annually. To test the feasibility of protecting animals through genetic engineering, transgenic cows secreting lysostaphin at concentrations ranging from 0.9 to 14 mg/ml in their milk were produced. In vitro assays demonstrated the milk's ability to kill Staphylococcus aureus. Intramammary infusions of S. aureus were administered to three transgenic and ten nontransgenic cows. Increases in milk somatic cells, elevated body temperatures and induced acute phase proteins, each indicative of infection, were observed in all of the nontransgenic cows but in none of the transgenic animals. Protection against S. aureus mastitis appears to be achievable with as little as 3 mg/ml of lysostaphin in milk. Our results indicate that genetic engineering can provide a viable tool for enhancing resistance to disease and improve the well-being of livestock.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Protein analysis of milk from transgenic Jersey cows 001, 101 and 204 and nontrans-genic Jersey cow 102.
Figure 2: Milk parameters and lysostaphin concentration during the first lactation of transgenic cows.
Figure 3: S. aureus serotype 5 lawn grown in the presence of 10-μl drops of milk from transgenic (Tg) and nontransgenic (Non-tg) Jersey cows and recombinant lysostaphin.
Figure 4: Response of transgenic (n = 3) and nontransgenic (n = 10) cows to intramammary infusion of 80 c.f.u. of S. aureus in each of three glands/cow during peak, mid- and late lactation (21 transgenic glands and 47 nontransgenic glands).

Change history

  • 01 July 2005

    Nat. Biotechnol. 23, 445–451 (2005) In the abstract on page 445, the quantities given for lysostaphin in the following sentences are incorrect: “To test the feasibility of protecting animals through genetic engineering, transgenic cows secreting lysostaphin at concentrations ranging from 0.9 to 14 mg/ml in their milk were produced” and “Protection against S.

References

  1. 1

    Hammer, R.E. et al. Production of transgenic rabbits, sheep and pigs by microinjection. Nature 315, 680–683 (1985).

    CAS  PubMed  Article  Google Scholar 

  2. 2

    Krimpenfort, P. et al. Generation of transgenic dairy cattle using in vitro embryo production. Bio/Technology 9, 844–847 (1991).

    CAS  PubMed  Google Scholar 

  3. 3

    Wright, G. et al. High level expression of active human α-1-antitrypsin in the milk of transgenic sheep. Bio/Technology 9, 830–834 (1991).

    CAS  PubMed  Google Scholar 

  4. 4

    Velander, W.H. et al. High-level expression of a heterologous protein in the milk of transgenic swine using the cDNA encoding human protein C. Proc. Natl. Acad. Sci. USA 89, 12003–12007 (1992).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Ebert, K.M. et al. Transgenic production of a variant of human tissue-type plasminogen activator in goat milk: generation of transgenic goats and analysis of expression. Bio/Technology 9, 835–838 (1991).

    CAS  PubMed  Google Scholar 

  6. 6

    Swanson, M.E. et al. Production of functional human hemoglobin in transgenic swine. Bio/Technology 10, 557–559 (1992).

    CAS  PubMed  Google Scholar 

  7. 7

    Fodor, W.L. et al. Expression of a functional human complement inhibitor in a transgenic pig as a model for the prevention of xenogeneic hyperacute organ rejection. Proc. Natl. Acad. Sci. USA 91, 11153–11157 (1994).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Bleck, G.T., White, B.R., Miller, D.J. & Wheeler, M.B. Production of bovine α-lactalbumin in the milk of transgenic pigs. J. Anim. Sci. 76, 3072–3078 (1998).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Brophy, B. et al. Cloned transgenic cattle produce milk with higher levels of β-casein and κ-casein. Nat. Biotechnol. 21, 157–162 (2003).

    CAS  PubMed  Article  Google Scholar 

  10. 10

    Pursel, V.G. et al. Growth and tissue accretion rates of swine expressing an insulin-like growth factor 1 transgene. Anim. Biotechnol. 15, 33–45 (2004).

    CAS  PubMed  Article  Google Scholar 

  11. 11

    Reh, W.A. et al. Hot topic: using a stearoyl-CoA desaturase transgene to alter milk fatty acid composition. J. Dairy Sci. 87, 3510–3514 (2004).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Saeki, K. et al. Functional expression of a Delta12 fatty acid desaturase gene from spinach in transgenic pigs. Proc. Natl. Acad. Sci. USA 101, 6361–6366 (2004).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Crittenden, L.B. & Salter, D.W. Gene insertion: current progress and long-term goals. Avian Dis. 30, 43–46 (1986).

    CAS  PubMed  Article  Google Scholar 

  14. 14

    Clements, J.E. et al. Development of transgenic sheep that express the visna virus envelope gene. Virology 200, 370–380 (1994).

    CAS  PubMed  Article  Google Scholar 

  15. 15

    Sordillo, L.M. & Streicher, K.L. Mammary gland immunity and mastitis susceptibility. J. Mammary Gland Biol. Neoplasia 7, 135–146 (2002).

    PubMed  Article  Google Scholar 

  16. 16

    Jasper, D.E. et al. Bovine mastitis research. Needs, funding and sources of support. in Proceedings of the 21st Annual Meeting of the National Mastitis Council, 182–193, (National Mastitis Council, Washington, DC, 1982).

    Google Scholar 

  17. 17

    Esslemont, D. & Kossaibati, M. Mastitis: how to get out of the dark ages. Vet. J. 164, 85–86 (2002).

    PubMed  Article  Google Scholar 

  18. 18

    Grohn, Y.T., Eicker, S.W., Ducrocq, V. & Hertl, J.A. Effect of diseases on the culling of Holstein dairy cows in New York State. J. Dairy Sci. 81, 966–978 (1998).

    CAS  PubMed  Article  Google Scholar 

  19. 19

    Sanchez, M.S., Ford, C.W. & Yancey, R.J., Jr. Effect of tumor necrosis factor-α, interleukin-1β, and antibiotics on the killing of intracellular Staphylococcus aureus. J. Dairy Sci. 77, 1251–1258 (1994).

    CAS  PubMed  Article  Google Scholar 

  20. 20

    Schindler, C.A. & Schuhardt, V.T. Lysostaphin: a new bacteriolytic agent for the Staphylococcus. Proc. Natl. Acad. Sci. USA 51, 414–421 (1964).

    CAS  PubMed  Article  Google Scholar 

  21. 21

    Schuhardt, V.T. & Schindler, C.A. Lysostaphin therapy in mice infected with Staphylococcus aureus. J. Bacteriol. 88, 815–816 (1964).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  22. 22

    Bramley, A.J. & Foster, R. Effects of lysostaphin on Staphylococcus aureus infections of the mouse mammary gland. Res. Vet. Sci. 49, 120–121 (1990).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Kerr, D.E. et al. Lysostaphin expression in mammary glands confers protection against staphylococcal infection in transgenic mice. Nat. Biotechnol. 19, 66–70 (2001).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Powell, A.M. et al. Cell donor influences success of producing cattle by somatic cell nuclear transfer. Biol. Reprod. 71, 210–216 (2004).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Ebert, K.M. et al. Induction of human tissue plasminogen activator in the mammary gland of transgenic goats. Bio/Technology 12, 699–702 (1994).

    CAS  PubMed  Google Scholar 

  26. 26

    Cammuso, C. et al. Hormonal induced lactation in transgenic goats. Anim. Biotechnol. 11, 1–17 (2000).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Heddaeus, H., Heczko, P.G. & Pulverer, G. Evaluation of the lysostaphin-susceptibility test for the classification of staphylococci. J. Med. Microbiol. 12, 9–15 (1979).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Grinde, B. A lysozyme isolated from rainbow trout acts on mastitis pathogens. FEMS Microbiol. Lett. 51, 179–182 (1989).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Bannerman, D.D. et al. Escherichia coli and Staphylococcus aureus elicit differential innate immune responses following intramammary infection. Clin. Diagn. Lab. Immunol. 11, 463–472 (2004).

    PubMed  PubMed Central  Article  Google Scholar 

  30. 30

    Gronlund, U., Hulten, C., Eckersall, P.D., Hogarth, C. & Waller, K.P. Haptoglobin and serum amyloid A in milk and serum during acute and chronic experimentally induced Staphylococcus aureus mastitis. J. Dairy Res. 70, 379–386 (2003).

    PubMed  Article  CAS  Google Scholar 

  31. 31

    Lund, T., Miglior, F., Dekkers, J.C.M. & Burnside, E.B. Genetic relationship between clinical mastitis, somatic cell count, and udder conformation in Danish Holsteins. Livest. Prod. Sci. 39, 243–251 (1996).

    Article  Google Scholar 

  32. 32

    McKnight, R.A., Shamay, A., Sankaran, L., Wall, R.J. & Hennighausen, L. Matrix-attachment regions can impart position-independent regulation of a tissue-specific gene in transgenic mice. Proc. Natl. Acad. Sci. USA 89, 6943–6947 (1992).

    CAS  PubMed  Article  Google Scholar 

  33. 33

    Artelt, P. et al. The prokaryotic neomycin-resistance-encoding gene acts as a transcriptional silencer in eukaryotic cells. Gene 99, 249–254 (1991).

    CAS  PubMed  Article  Google Scholar 

  34. 34

    Schukken, Y.H. et al. Experimental Staphylococcus aureus intramammary challenge in late lactation dairy cows: quarter and cow effects determining the probability of infection. J. Dairy Sci. 82, 2393–2401 (1999).

    CAS  PubMed  Article  Google Scholar 

  35. 35

    Paape, M.J., Schultze, W.D., Guidry, A.J., Kortum, W.M. & Weinland, B.T. Effect of intramammary polyethylene device on the concentration of leukocytes and immunoglobulins in milk and on the leukocyte response to Escherichia coli endotoxin and challenge exposure with Staphylococcus aureus. Am. J. Vet. Res. 42, 774–783 (1981).

    CAS  PubMed  Google Scholar 

  36. 36

    Uhlar, C.M. & Whitehead, A.S. Serum amyloid A, the major vertebrate acute-phase reactant. Eur. J. Biochem. 265, 501–523 (1999).

    CAS  PubMed  Article  Google Scholar 

  37. 37

    Schumann, R.R. & Latz, E. Lipopolysaccharide-binding protein. Chem. Immunol. 74, 42–60 (2000).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Schroder, N.W. et al. Lipoteichoic acid (LTA) of Streptococcus pneumoniae and Staphylococcus aureus activates immune cells via Toll-like receptor (TLR-2, lipopolysaccharide-binding protein (LBP), and CD14, whereas TLR-4 and MD-2 are not involved. J. Biol. Chem. 278, 15587–15594 (2003).

    PubMed  Article  Google Scholar 

  39. 39

    Salter, D.W. et al. Gene insertion into the chicken germ line by retroviruses. Poult. Sci 65, 1445–1458 (1986).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Van Berkel, P.H. et al. Large scale production of recombinant human lactoferrin in the milk of transgenic cows. Nat. Biotechnol. 20, 484–487 (2002).

    CAS  PubMed  Article  Google Scholar 

  41. 41

    Maga, E.A., Anderson, G.B., Cullor, J.S., Smith, W. & Murray, J.D. Antimicrobial properties of human lysozyme transgenic mouse milk. J. Food Prot. 61, 52–56 (1998).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Mitra, A. et al. Expression of lysostaphin in milk of transgenic mice affects the growth of neonates. Transgenic Res. 12, 597–605 (2003).

    CAS  PubMed  Article  Google Scholar 

  43. 43

    Harrison, E.F., Fuquay, M.E. & Zygmunt, W.A. Antigenic response to topically applied proteins. Infect. Immun. 11, 309–312 (1975).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  44. 44

    Harris, R.L., Nunnery, A.W. & Riley, H.D., Jr. Effect of lysostaphin on staphylococcal carriage in infants and children. Antimicrob. Agents Chemother. 1967, 110–112 (1968).

    Google Scholar 

  45. 45

    Martin, R.R. & White, A. The selective activity of lysostaphin in vivo. J. Lab. Clin. Med. 70, 1–8 (1967).

    CAS  PubMed  Google Scholar 

  46. 46

    Dajcs, J.J. et al. Lysostaphin is effective in treating methicillin-resistant Staphylococcus aureus endophthalmitis in the rabbit. Curr. Eye Res. 22, 451–457 (2001).

    CAS  PubMed  Article  Google Scholar 

  47. 47

    Cavadini, C., Hertel, C. & Hammes, W.P. Application of lysostaphin-producing lactobacilli to control staphylococcal food poisoning in meat products. J. Food Prot. 61, 419–424 (1998).

    CAS  PubMed  Article  Google Scholar 

  48. 48

    Guidry, A. et al. Serotyping scheme for Staphylococcus aureus isolated from cows with mastitis. Am. J. Vet. Res. 59, 1537–1539 (1998).

    CAS  PubMed  Google Scholar 

  49. 49

    Miller, R.H., Paape, M.J. & Acton, J.C. Comparison of milk somatic cell counts by Coulter and Fossomatic Counters. J. Dairy Sci. 69, 1942–1946 (1986).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Ball, S., Polson, K., Emeny, J., Eyestone, W. & Akers, R.M. Induced lactation in prepubertal Holstein heifers. J. Dairy Sci. 83, 2459–2463 (2000).

    CAS  PubMed  Article  Google Scholar 

  51. 51

    Barry, A.L. Procedure for testing antibiotics in agar media: theoretical considerations. in Antibiotics in Laboratory Medicine (ed. Lorian, V.) 1–23 (Williams and Wilkins, Baltimore, 1980).

    Google Scholar 

Download references

Acknowledgements

We thank Caird Rexroad, Jr., Lanette Edwards and John Bramley for helping establish the groundwork on which this project was built. We thank Paul Graninger for excellent technical assistance and Linda Mooney, Jon Leith and Mike Kemp for expert animal care. We also thank Duane Norman for milking record analysis. Reference to any commercial product or service is made with the understanding that no discrimination is intended and no endorsement by the USDA is implied.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Robert J Wall.

Ethics declarations

Competing interests

D.E.K. is co-inventor on a US patent that incorporates some aspects of this work.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Wall, R., Powell, A., Paape, M. et al. Genetically enhanced cows resist intramammary Staphylococcus aureus infection. Nat Biotechnol 23, 445–451 (2005). https://doi.org/10.1038/nbt1078

Download citation

Further reading

Search

Quick links