Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks


A major challenge in drug discovery is to distinguish the molecular targets of a bioactive compound from the hundreds to thousands of additional gene products that respond indirectly to changes in the activity of the targets1,2,3,4,5,6,7,8. Here, we present an integrated computational-experimental approach for computing the likelihood that gene products and associated pathways are targets of a compound. This is achieved by filtering the mRNA expression profile of compound-exposed cells using a reverse-engineered model of the cell's gene regulatory network. We apply the method to a set of 515 whole-genome yeast expression profiles resulting from a variety of treatments (compounds, knockouts and induced expression), and correctly enrich for the known targets and associated pathways in the majority of compounds examined. We demonstrate our approach with PTSB, a growth inhibitory compound with a previously unknown mode of action, by predicting and validating thioredoxin and thioredoxin reductase as its target.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of the MNI method.
Figure 2: Structure of the network model.
Figure 3: Predicted targets of itraconazole.
Figure 4: Thioredoxin/thioredoxin reductase activity assay.

Similar content being viewed by others


  1. Hughes, T.R. et al. Functional discovery via a compendium of expression profiles. Cell 102, 109–126 (2000).

    Article  CAS  Google Scholar 

  2. Courcelle, J., Khodursky, A., Peter, B., Brown, P.O. & Hanawalt, P.C. Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli. Genetics 158, 41–64 (2001).

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Bredel, M. & Jacoby, E. Chemogenomics: an emerging strategy for rapid target and drug discovery. Nat. Rev. Genet. 5, 262–275 (2004).

    Article  CAS  Google Scholar 

  4. Miklos, G.L.G. & Maleszka, R. Microarray reality checks in the context of a complex disease. Nat. Biotechnol. 22, 615–621 (2004).

    Article  CAS  Google Scholar 

  5. Giaever, G. et al. Genomic profiling of drug sensitivities via induced haploinsufficiency. Nat. Genet. 21, 278–283 (1999).

    Article  CAS  Google Scholar 

  6. Giaever, G. et al. Chemogenomic profiling: identifying the functional interactions of small molecules in yeast. Proc. Natl. Acad. Sci. USA 101, 793–798 (2004).

    Article  CAS  Google Scholar 

  7. Lum, P.Y. et al. Discovering modes of action for therapeutic compounds using a genome-wide screen of yeast heterozygotes. Cell 116, 121–137 (2004).

    Article  CAS  Google Scholar 

  8. Parsons, A.B. et al. Integration of chemical-genetic and genetic interaction data links bioactive compounds to cellular target pathways. Nat. Biotechnol. 22, 62–69 (2004).

    Article  CAS  Google Scholar 

  9. Marton, M.J. et al. Drug target validation and identification of secondary drug target effects using DNA microarrays. Nat. Med. 4, 1293–1301 (1998).

    Article  CAS  Google Scholar 

  10. Stoughton, R. & Friend, S.H. Methods for identifying pathways of drug action. US Patent No. 5,965,352 (2003).

  11. Bar-Joseph, Z. et al. Computational discovery of gene modules and regulatory networks. Nat. Biotechnol. 21, 1337–1342 (2003).

    Article  CAS  Google Scholar 

  12. Beer, M.A. & Tavazoie, S. Predicting gene expression from sequence. Cell 117, 185–198 (2004).

    Article  CAS  Google Scholar 

  13. Covert, M.W., Knight, E.M., Reed, J.L., Herrgard, M.J. & Palsson, B.O. Integrating high-throughput and computational data elucidates bacterial networks. Nature 429, 92–96 (2004).

    Article  CAS  Google Scholar 

  14. de la Fuente, A., Brazhnik, P. & Mendes, P. Linking the genes: inferring quantitative gene networks from microarray data. Trends Genet. 18, 395–398 (2002).

    Article  CAS  Google Scholar 

  15. Gardner, T.S., di Bernardo, D., Lorenz, D. & Collins, J.J. Inferring genetic networks and identifying compound mode of action via expression profiling. Science 301, 102–105 (2003).

    Article  CAS  Google Scholar 

  16. Gasch, A.P. et al. Genomic expression programs in the response of yeast cells to environmental changes. Mol. Biol. Cell 11, 4241–4257 (2000).

    Article  CAS  Google Scholar 

  17. Herrgard, M.J., Covert, M.W. & Palsson, B.O. Reconstruction of microbial transcriptional regulatory networks. Curr. Opin. Biotechnol. 15, 70–77 (2004).

    Article  CAS  Google Scholar 

  18. Ideker, T. et al. Integrated genomic and proteomic analyses of a systematically perturbed metabolic network. Science 292, 929–934 (2001).

    Article  CAS  Google Scholar 

  19. Liao, J.C. et al. Network component analysis: reconstruction of regulatory signals in biological systems. Proc. Natl. Acad. Sci. USA 100, 15522–15527 (2003).

    Article  CAS  Google Scholar 

  20. Rice, J. & Stolovitzky, G. Making the most of it: pathway reconstruction and integrative simulation using the data at hand. Drug Discov. Today: BioSilico 2, 70–77 (2004).

    Article  Google Scholar 

  21. Ronen, M., Rosenberg, R., Shraiman, B.I. & Alon, U. Assigning numbers to the arrows: parameterizing a gene regulation network by using accurate expression kinetics. Proc. Natl. Acad. Sci. USA 99, 10555–10560 (2002).

    Article  CAS  Google Scholar 

  22. Tegner, J., Yeung, M.K., Hasty, J. & Collins, J.J. Reverse engineering gene networks: integrating genetic perturbations with dynamical modeling. Proc. Natl. Acad. Sci. USA 100, 5944–5949 (2003).

    Article  CAS  Google Scholar 

  23. Yeung, M.K.S., Tegner, J. & Collins, J.J. Reverse engineering gene networks using singular value decomposition and robust regression. Proc. Natl. Acad. Sci. USA 99, 6163–6168 (2002).

    Article  CAS  Google Scholar 

  24. Kholodenko, B.N. et al. Untangling the wires: a strategy to trace functional interactions in signaling and gene networks. Proc. Natl. Acad. Sci. USA 99, 12841–12846 (2002).

    Article  CAS  Google Scholar 

  25. Hartemink, A.J., Gifford, D.K., Jaakkola, T.S. & Young, R.A. Combining location and expression data for principled discovery of genetic regulatory network. Proc. Pacific. Symp. Biocomp. 7, 437–449 (2002).

    Google Scholar 

  26. Kalir, S. & Alon, U. Using a quantitative blueprint to reprogram the dynamics of the flagella gene network. Cell 117, 713–720 (2004).

    Article  CAS  Google Scholar 

  27. Schmitt, W.A.J., Raab, R.M. & Stephanopoulos, G. Elucidation of gene interaction networks through time-lagged correlation analysis of transcriptional data. Genome Res. 14, 1654–1663 (2004).

    Article  CAS  Google Scholar 

  28. Dempster, A., Laird, N. & Rubin, D. Maximum likelihood from incomplete data via the EM algorithm. J. R. Stat. Soc. [Ser. B] 39, 1–38 (1977).

    Google Scholar 

  29. Mnaimneh, S. et al. Exploration of essential gene functions via titratable promoter alleles. Cell 118, 31–44 (2004).

    Article  CAS  Google Scholar 

  30. Ueda, M. et al. Effect of catalase-specific inhibitor 3-amino-1,2,4-triazole on yeast peroxisomal catalase in vivo. FEMS Microbiol. Lett. 219, 93–98 (2003).

    Article  CAS  Google Scholar 

  31. Chabes, A. et al. Survival of DNA damage in yeast directly depends on increased dNTP levels allowed by relaxes feedback inhibition of ribonucleotide reductase. Cell 112, 391–401 (2003).

    Article  CAS  Google Scholar 

  32. Kanehisa, M. & Goto, S. KEGG: Kyoto Encyclopedia of Genes and Genomes. Nucleic Acids Res. 28, 27–30 (2000).

    Article  CAS  Google Scholar 

  33. Bennett, C. et al. Genes required for ionizing radiation resistance in yeast. Nat. Genet. 29, 426–434 (2001).

    Article  CAS  Google Scholar 

  34. Hand, R.A., Jia, N., Bard, M. & Craven, R.J. Saccharomyces cerevisiae Dap1p, a novel DNA damage response protein related to the mammalian membrane-associated progesterone receptor. Eukaryot. Cell 2, 306–317 (2003).

    Article  CAS  Google Scholar 

  35. Holmgren, A. & Reichard, P. Thioredoxin 2: cleavage with cyanogen bromide. Eur. J. Biochem. 2, 187–196 (1967).

    Article  CAS  Google Scholar 

  36. NCBI Gene Expression Omnibus:

  37. Stanford Microarray Database:

  38. The Alliance for Cellular Signaling:

  39. Eisen, M.B. & Brown, P.O. DNA arrays for analysis of gene expression. Meth. Enzymol. 303, 179–205 (1999).

    Article  CAS  Google Scholar 

  40. Hastie, T., Tibshirani, R. & Friedman, J. The Elements of Statistical Learning: Data Mining, Inference, and Prediction (Springer, New York, 2001).

    Book  Google Scholar 

  41. Klobucnikova, V. et al. Terbinafine resistance in a pleiotropic yeast mutant is caused by a single point mutation in the ERG1 gene. Biochem. Biophys. Res. Commun. 309, 666–671 (2003).

    Article  CAS  Google Scholar 

  42. Rine, J., Hansen, W., Hardeman, E. & Davis, R.W. Targeted selection of recombinant clones through gene dosage effects. Proc. Natl. Acad. Sci. USA 80, 6750–6754 (1983).

    Article  CAS  Google Scholar 

  43. Daum, G., Lees, N.D., Bard, M. & Dickson, R. Biochemistry, cell biology and molecular biology of lipids of Saccharomyces cerevisiae. Yeast 14, 1471–1510 (1998).

    Article  CAS  Google Scholar 

  44. Rittberg, D.A. & Wright, J.A. Relationships between sensitivity to hydroxyurea and 4-methyl-5-amino-1-formylisoquinoline thiosemicarbazone (MAIO) and ribonucleotide reductase RNR2 mRNA levels in strains of Saccharomyces cerevisiae. Biochem. Cell Biol. 67, 352–357 (1989).

    Article  CAS  Google Scholar 

  45. Stocklein, W. & Piepersberg, W. Binding of cycloheximide to ribosomes from wild-type and mutant strains of Saccharomyces cerevisiae. Antimicrob. Agents Chemother. 18, 863–867 (1980).

    Article  CAS  Google Scholar 

  46. Barnes, G., Hansen, W.J., Holcomb, C.L. & Rine, J. Asparagine-linked glycosylation in Saccharomyces cerevisiae: genetic analysis of an early step. Mol. Cell Biol. 4, 2381–2388 (1984).

    Article  CAS  Google Scholar 

  47. Gaughran, J.P., Lai, M.H., Kirsch, D.R. & Silverman, S.J. Nikkomycin Z is a specific inhibitor of Saccharomyces cerevisiae chitin synthase isozyme Chs3 in vitro and in vivo. J. Bacteriol. 176, 5857–5860 (1994).

    Article  CAS  Google Scholar 

  48. Anderson, R.M. et al. Yeast life-span extension by calorie restriction is independent of NAD fluctuation. Science 302, 2124–2126 (2003).

    Article  CAS  Google Scholar 

Download references


Support for this work was provided by the Department of Energy, the National Institutes of Health, the National Heart, Lung and Blood Institute Proteomics Initiative, the Whitaker Foundation, the National Science Foundation, the Fondazione Telethon, Boston University and the Pharmaceutical Research and Manufacturers of America Foundation.

Author information

Authors and Affiliations


Corresponding author

Correspondence to James J Collins.

Ethics declarations

Competing interests

Provisional patent applications have been filed on the MNI algorithm and the PTSB compound.

Supplementary information

Supplementary Table 1

TET-inducible experiments: comparison between normal and modified z-scores (PDF 21 kb)

Supplementary Table 2

Treatment with drugs: comparison between normal and modified z-scores (PDF 23 kb)

Supplementary Table 3

Pathways involved in compound mode of action: MNI approach versus mRNA expression change (PDF 15 kb)

Supplementary Table 4

Pathways involved in compound mode of action: Association analysis approaches (PDF 15 kb)

Supplementary Table 5

Top 50 ranked genes (MNI) Drugs with known targets Drugs without well-established targets (PDF 24 kb)

Supplementary Notes (PDF 91 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

di Bernardo, D., Thompson, M., Gardner, T. et al. Chemogenomic profiling on a genome-wide scale using reverse-engineered gene networks. Nat Biotechnol 23, 377–383 (2005).

Download citation

  • Published:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing