Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Looking and listening to light: the evolution of whole-body photonic imaging

Abstract

Optical imaging of live animals has grown into an important tool in biomedical research as advances in photonic technology and reporter strategies have led to widespread exploration of biological processes in vivo. Although much attention has been paid to microscopy, macroscopic imaging has allowed small-animal imaging with larger fields of view (from several millimeters to several centimeters depending on implementation). Photographic methods have been the mainstay for fluorescence and bioluminescence macroscopy in whole animals, but emphasis is shifting to photonic methods that use tomographic principles to noninvasively image optical contrast at depths of several millimeters to centimeters with high sensitivity and sub-millimeter to millimeter resolution. Recent theoretical and instrumentation advances allow the use of large data sets and multiple projections and offer practical systems for quantitative, three-dimensional whole-body images. For photonic imaging to fully realize its potential, however, further progress will be needed in refining optical inversion methods and data acquisition techniques.

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: Modes of data collection.
Figure 2: Spectral imaging applied to in vivo fluorescence detection.
Figure 3: Fluorescence reconstruction of a fluorescent tube inserted in a euthanized animal obtained in the absence of contact detection.
Figure 4: In vivo fluorescence imaging.
Figure 5: Visualization of brain structure and function using photoacoustic tomography (modified from ref. 57.
Figure 6: Performance of planar and tomographic imaging.

References

  1. 1

    Massoud, T.F. & Gambhir, S.S. Molecular imaging in living subjects: seeing fundamental biological processes in a new light. Genes Dev. 17, 545–580 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  2. 2

    Blasberg, R.G. In vivo molecular-genetic imaging: multi-modality nuclear and optical combinations. Nucl. Med. Biol. 30, 879–888 (2003).

    CAS  PubMed  Article  Google Scholar 

  3. 3

    Budinger, T.F., Benaron, D.A. & Koretsky, A.P. Imaging transgenic animals. Annu. Rev. Biomed. Eng. 1, 611–648 (1999).

    CAS  PubMed  Article  Google Scholar 

  4. 4

    Contag, C.H. & Bachmann, M.H. Advances in in vivo bioluminescence imaging of gene expression. Annu. Rev. Biomed. Eng. 4, 235–260 (2002).

    CAS  PubMed  Article  Google Scholar 

  5. 5

    Piwnica-Worms, D., Schuster, D.P. & Garbow, J.R. Molecular imaging of host-pathogen interactions in intact small animals. Cell. Microbiol. 6, 319–331 (2004).

    CAS  PubMed  Article  Google Scholar 

  6. 6

    Weissleder, R. Scaling down imaging: molecular mapping of cancer in mice. Nat. Rev. Cancer 2, 11–18 (2002).

    CAS  PubMed  Article  Google Scholar 

  7. 7

    Hoffman, R. Green fluorescent protein imaging of tumour growth, metastasis, and angiogenesis in mouse models. Lancet Oncol. 3, 546–556 (2002).

    CAS  PubMed  Article  Google Scholar 

  8. 8

    Bornhop, D.J., Contag, C.H., Licha, K. & Murphy, C.J. Advance in contrast agents, reporters, and detection. J. Biomed. Opt. 6, 106–110 (2001).

    CAS  PubMed  Article  Google Scholar 

  9. 9

    Tung, C., Mahmood, U., Bredow, S. & Weissleder, R. In vivo imaging of proteolytic enzyme activity using a novel molecular reporter. Cancer Res. 60, 4953–4958 (2000).

    CAS  PubMed  PubMed Central  Google Scholar 

  10. 10

    Herschman, H.R. Molecular imaging: looking at problems, seeing solutions. Science 302, 605–608 (2003).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  11. 11

    Weissleder, R. & Ntziachristos, V. Shedding light onto live molecular targets. Nat. Med. 9, 123–128 (2003).

    CAS  PubMed  Article  Google Scholar 

  12. 12

    Reynolds, J.S. et al. Imaging of spontaneous canine mammary tumors using fluorescent contrast agents. Photochem. Photobiol. 70, 87–94 (1999).

    CAS  PubMed  Article  Google Scholar 

  13. 13

    Mahmood, U., Tung, C., Bogdanov, A. & Weissleder, R. Near infrared optical imaging system to detect tumor protease activity. Radiology 213, 866–870 (1999).

    CAS  PubMed  PubMed Central  Article  Google Scholar 

  14. 14

    Yang, M. et al. Whole-body optical imaging of green fluorescent protein-expressing tumors and metastases. Proc. Natl. Acad. Sci. USA 97, 1206–1211 (2000).

    CAS  Article  Google Scholar 

  15. 15

    Contag, C.H. & Ross, B.D. It's not just about anatomy: in vivo bioluminescence imaging as an eyepiece into biology. J. Magn. Reson. Imaging 16, 378–387 (2002).

    PubMed  Article  Google Scholar 

  16. 16

    Farkas, D.L. et al. Non-invasive image acquisition and advanced processing in optical bioimaging. Comput. Med. Imaging Graph. 22, 89–102 (1998).

    CAS  PubMed  Article  Google Scholar 

  17. 17

    Gao, X., Cui, Y., Levenson, R.M., Chung, L.W.K. & Nie, S. In vivo cancer targeting and imaging with semiconductor quantum dots. Nat. Biotechnol. 22, 969–976 (2004).

    CAS  PubMed  Article  Google Scholar 

  18. 18

    Arridge, S.R., Schweiger, M., Hiraoka, M. & Delpy, D.T.A. Finite-Element Approach For Modeling Photon Transport In Tissue. Med. Phys. 20, 299–309 (1993).

    Google Scholar 

  19. 19

    Graber, H.L. & Barbour, R.L. High-resolution near-infrared (nir) imaging of dense scattering media by diffusion tomography. FASEB J. 7, A720–A720 (1993).

    Google Scholar 

  20. 20

    Schotland, J.C. & Leigh, J.S. Photon diffusion imaging. FASEB J. 6, A446–A446 (1992).

    Google Scholar 

  21. 21

    Yodh, A.G. & Chance, B. Spectroscopy and imaging with diffusing light. Phys. Today 48, 34–40 (1995).

    Article  Google Scholar 

  22. 22

    Chance, B. Optical Method. Annu. Rev. Biophys. Biophys. Chem. 20, 1–28 (1991).

    CAS  PubMed  Article  Google Scholar 

  23. 23

    Jobsis, F.F. Noninvasive, infrared monitoring of cerebral and myocardial oxygen sufficiency and circulatory parameters. Science 198, 1264–1267 (1977).

    CAS  PubMed  Article  Google Scholar 

  24. 24

    Patterson, M.S., Chance, B. & Wilson, B.C. Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical-properties. Appl. Opt. 28, 2331–2336 (1989).

    CAS  PubMed  Article  Google Scholar 

  25. 25

    Graves, E., Ripoll, J., Weissleder, R. & Ntziachristos, V.A. Sub-millimeter resolution fluorescence molecular imaging system for small animal imaging. Med. Phys. 30, 901–911 (2003).

    CAS  PubMed  Article  Google Scholar 

  26. 26

    Alfano, R.R. et al. Time-resolved and nonlinear optical imaging for medical applications. Ann. NY Acad. Sci. 838, 14–28 (1998).

    CAS  PubMed  Article  Google Scholar 

  27. 27

    Sevick, E.M., Chance, B., Leigh, J., Nioka, S. & Maris, M. Quantitation of time-resolved and frequency-resolved optical-spectra for the determination of tissue oxygenation. Anal. Biochem. 195, 330–351 (1991).

    CAS  PubMed  Article  Google Scholar 

  28. 28

    Cai, W. et al. Optical tomographic image reconstruction from ultrafast time-sliced transmission measurements. Appl. Opt. 38, 4237–4246 (1999).

    CAS  PubMed  Article  Google Scholar 

  29. 29

    Chen, K., Perelman, L.T., Zhang, Q.G., Dasari, R.R. & Feld, M.S. Optical computed tomography in a turbid medium using early arriving photons. J. Biomed. Opt. 5, 144–154 (2000).

    CAS  PubMed  Article  Google Scholar 

  30. 30

    Turner, G., Zacharakis, I., Soubret, A. & Ntziachristos, V. Complete angle projection diffuse optical tomography using early photons. Optics Letters 30, 409–411 (2005).

    PubMed  Article  Google Scholar 

  31. 31

    Boas, D.A., Oleary, M.A., Chance, B. & Yodh, A.G. Scattering of diffuse photon density waves by spherical inhomogeneities within turbid media - analytic solution and applications. Proc. Natl. Acad. Sci. USA 91, 4887–4891 (1994).

    CAS  PubMed  Article  Google Scholar 

  32. 32

    Godavarty, A. et al. Fluorescence-enhanced optical imaging in large tissue volumes using a gain-modulated ICCD camera. Phys. Med. Biol. 48, 1701–1720 (2003).

    PubMed  Article  Google Scholar 

  33. 33

    Boas, D.A. et al. Imaging the body with diffuse optical tomography. IEEE Signal Process. Mag. 18, 57–75 (2001).

    Article  Google Scholar 

  34. 34

    Ripoll, J., Schultz, R. & Ntziachristos, V. Free-space propagation of diffuse light: Theory and Experiments. Phys. Rev. Lett. 91, 103901–103904 (2003).

    PubMed  Article  Google Scholar 

  35. 35

    Schultz, R., Ripoll, J. & Ntziachristos, V. Experimental fluorescence tomography of arbitrarily shaped diffuse objects using non-contact measurements. Opt. Lett. 28, 1701–1703 (2003).

    Article  Google Scholar 

  36. 36

    Schultz, R., Ripoll, J. & Ntziachristos, V. Fluorescence tomography of tissues with non-contact measurements. IEEE Med. Imag. 23, 492–500 (2004).

    Article  Google Scholar 

  37. 37

    Chang, J., Graber, H.L. & Barbour, R.L. Imaging of fluorescence in highly scattering media. IEEE Trans. Biomed. Eng. 44, 810–822 (1997).

    CAS  PubMed  Article  Google Scholar 

  38. 38

    Eppstein, M.J., Hawrysz, D.J., Godavarty, A. & Sevick-Muraca, E.M. Three-dimensional, Bayesian image reconstruction from sparse and noisy data sets: near-infrared fluorescence tomography. Proc. Natl. Acad. Sci. USA 99, 9619–9624 (2002).

    CAS  PubMed  Article  Google Scholar 

  39. 39

    Jiang, H.B. Frequency-domain fluorescent diffusion tomography: a finite- element-based algorithm and simulations. Appl. Opt. 37, 5337–5343 (1998).

    CAS  PubMed  Article  Google Scholar 

  40. 40

    Milstein, A.B. et al. Fluorescence optical diffusion tomography. Appl. Opt. 42, 3081–3094 (2003).

    PubMed  Article  Google Scholar 

  41. 41

    Ntziachristos, V. & Weissleder, R. Experimental three-dimensional fluorescence reconstruction of diffuse media using a normalized Born approximation. Opt. Lett. 26, 893–895 (2001).

    CAS  PubMed  Article  Google Scholar 

  42. 42

    Klose, A.D. & Hielscher, A.H. Fluorescence tomography with simulated data based on the equation of radiative transfer. Opt. Lett. 28, 1019–1021 (2003).

    PubMed  Article  Google Scholar 

  43. 43

    Dehghani, H., Arridge, S.R., Schweiger, M. & Delpy, D.T. Optical tomography in the presence of void regions. J. Opt. Soc. Am. A Opt. Image Sci. Vis. 17, 1659–1670 (2000).

    CAS  PubMed  Article  Google Scholar 

  44. 44

    Ntziachristos, V., Tung, C., Bremer, C. & Weissleder, R. Fluorescence-mediated tomography resolves protease activity in vivo. Nat. Med. 8, 757–760 (2002).

    CAS  PubMed  Article  Google Scholar 

  45. 45

    Ripoll, J., Nieto-Vesperinas, M., Weissleder, R. & Ntziachristos, V. Fast analytical approximation for arbitrary geometries in diffuse optical tomography. Opt. Lett. 27, 527–529 (2002).

    PubMed  Article  Google Scholar 

  46. 46

    Gu, X., Xu, Y. & Jiang, H. Mesh-based enhancement schemes in diffuse optical tomography. Med. Phys. 30, 861–869 (2003).

    PubMed  Article  Google Scholar 

  47. 47

    Ye, J.C., Bouman, C.A., Webb, K.J. & Millane, R.P. Nonlinear multigrid algorithms for Bayesian optical diffusion tomography. IEEE Trans. Image Process. 10, 909–922 (2001).

    Article  Google Scholar 

  48. 48

    Vernooy, J., Dentener, M., van Suylen, R., Buurman, W. & Wouters, E. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am. J. Respir. Cell Mol. Biol. 26, 152–159 (2002).

    CAS  PubMed  Article  Google Scholar 

  49. 49

    Lautwein, A. et al. Inflammatory stimuli recruit cathepsin activity to late endosomal compartments in human dendritic cells. Eur. J. Immunol. 32, 3348–3357 (2002).

    CAS  PubMed  Article  Google Scholar 

  50. 50

    Prin-Mathieu, C. et al. Enzymatic activities of bovine peripheral blood leukocytes and milk polymorphonuclear neutrophils during intramammary inflammation caused by lipopolysaccharide. Clin. Diagn. Lab. Immunol. 9, 812–817 (2002).

    CAS  PubMed  PubMed Central  Google Scholar 

  51. 51

    Weissleder, R., Tung, C.H., Mahmood, U. & Bogdanov, A. In vivo imaging of tumors with protease-activated near-infrared fluorescent probes. Nat. Biotechnol. 17, 375–378 (1999).

    CAS  PubMed  Article  Google Scholar 

  52. 52

    Ntziachristos, V. et al. Visualization of anti-tumor treatment by means of fluorescence molecular tomography using an annexin V - Cy5.5 conjugate. Proc. Natl. Acad. Sci. USA 101, 12294–12299 (2004).

    CAS  PubMed  Article  Google Scholar 

  53. 53

    Wang, G., Li, Y. & Jiang, M. Uniqueness theorems in bioluminescence tomography. Med. Phys. 31, 2289–2299 (2004).

    PubMed  Article  Google Scholar 

  54. 54

    Gu, X., Zhang, Q., Larcom, L. & Jiang, H.B. Three-dimensional bioluminescence tomography with model-based reconstruction. Opt. Express 12, 3996–4000 (2004).

    PubMed  Article  Google Scholar 

  55. 55

    Hoelen, C.G.A. & de Mul, F.F.M. Image reconstruction for photoacoustic scanning of tissue structures. Appl. Opt. 39, 5872–5883 (2000).

    CAS  PubMed  Article  Google Scholar 

  56. 56

    Wang, X. et al. Noninvasive photoacoustic angiography of animal brains in vivo with near-infrared light and an optical contrast agent. Opt. Lett. 29, 730–732 (2004).

    PubMed  Article  Google Scholar 

  57. 57

    Wang, X. et al. Noninvasive laser-induced photoacoustic tomography for structural and functional in vivo imaging of the brain. Nat. Biotechnol. 21, 803–806 (2003).

    CAS  PubMed  Article  Google Scholar 

  58. 58

    Karabutov, A.A., Savateeva, E.V. & Oraevsky, A.A. Optoacoustic tomography: new modality of laser diagnostic systems. Laser Phys. 13, 711–723 (2003).

    Google Scholar 

Download references

Acknowledgements

V.N. is supported in part by National Institutes of Health (NIH) grants RO1 EB 000750-1, 1-NO1-CO027105 and R33 CA 91807. J. Ripoll acknowledges support from EU Integrated Project “Molecular Imaging” LSHG-CT-2003-503259. R.W. is supported in part by NIH grants P50 CA86355, R24 CA92782, R33 CA091807, PO1 AI054904, PO1 CA69246 and grants from the Donald W. Reynolds Foundation and Siemens Medical Systems.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Vasilis Ntziachristos.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Ntziachristos, V., Ripoll, J., Wang, L. et al. Looking and listening to light: the evolution of whole-body photonic imaging. Nat Biotechnol 23, 313–320 (2005). https://doi.org/10.1038/nbt1074

Download citation

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing