Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Evolutionary optimization of fluorescent proteins for intracellular FRET

Abstract

Fluorescent proteins that exhibit Förster resonance energy transfer (FRET) have made a strong impact as they enable measurement of molecular-scale distances through changes in fluorescence1. FRET-based approaches have enabled otherwise intractable measurements of molecular concentrations2, binding interactions3 and catalytic activity4, but are limited by the dynamic range and sensitivity of the donor-acceptor pair. To address this problem, we applied a quantitative evolutionary strategy using fluorescence-activated cell sorting to optimize a cyan-yellow fluorescent protein pair for FRET. The resulting pair, CyPet-YPet, exhibited a 20-fold ratiometric FRET signal change, as compared to threefold for the parental pair. The optimized FRET pair enabled high-throughput flow cytometric screening of cells undergoing caspase-3–dependent apoptosis. The CyPet-YPet energy transfer pair provides substantially improved sensitivity and dynamic range for a broad range of molecular imaging and screening applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Evolution of FRET pair dynamic range (RRC) and brightness.
Figure 2: Flow cytometric detection of apoptotic cells using FRET.

Similar content being viewed by others

References

  1. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  Google Scholar 

  2. Miyawaki, A. et al. Fluorescent indicators for Ca2+ based on green fluorescent proteins and calmodulin. Nature 388, 882–887 (1997).

    Article  CAS  Google Scholar 

  3. Chan, F.K. et al. Fluorescence resonance energy transfer analysis of cell surface receptor interactions and signaling using spectral variants of the green fluorescent protein. Cytometry 44, 361–368 (2001).

    Article  CAS  Google Scholar 

  4. Jones, J., Heim, R., Hare, E., Stack, J. & Pollok, B.A. Development and application of a GFP-FRET intracellular caspase assay for drug screening. J. Biomol. Screen. 5, 307–318 (2000).

    Article  CAS  Google Scholar 

  5. Rizzo, M.A., Springer, G.H., Granada, B. & Piston, D.W. An improved cyan fluorescent protein variant useful for FRET. Nat. Biotechnol. 22, 445–449 (2004).

    Article  CAS  Google Scholar 

  6. Jensen, K.K., Martini, L. & Schwartz, T.W. Enhanced fluorescence resonance energy transfer between spectral variants of green fluorescent protein through zinc-site engineering. Biochemistry 40, 938–945 (2001).

    Article  CAS  Google Scholar 

  7. Van Der Meer, B.W., Coker, G. & Chen, S.Y.S. Resonance Energy Transfer Theory and Data (VCH Publishers, New York, 1994).

    Google Scholar 

  8. Pollok, B.A. & Heim, R. Using GFP in FRET-based applications. Trends Cell Biol. 9, 57–60 (1999).

    Article  CAS  Google Scholar 

  9. Campbell, R.E. et al. A monomeric red fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 7877–7882 (2002).

    Article  CAS  Google Scholar 

  10. Nagai, T. et al. A variant of yellow fluorescent protein with fast and efficient maturation for cell-biological applications. Nat. Biotechnol. 20, 87–90 (2002).

    Article  CAS  Google Scholar 

  11. Rekas, A., Alattia, J.R., Nagai, T., Miyawaki, A. & Ikura, M. Crystal structure of venus, a yellow fluorescent protein with improved maturation and reduced environmental sensitivity. J. Biol. Chem. 277, 50573–50578 (2002).

    Article  CAS  Google Scholar 

  12. Voigt, C.A., Kauffman, S. & Wang, Z.G. Rational evolutionary design: the theory of in vitro protein evolution. Adv. Protein Chem. 55, 79–160 (2000).

    Article  CAS  Google Scholar 

  13. Heim, R. & Tsien, R.Y. Engineering green fluorescent protein for improved brightness, longer wavelengths and fluorescence resonance energy transfer. Curr. Biol. 6, 178–182 (1996).

    Article  CAS  Google Scholar 

  14. Lakowicz, J.R. Principles of fluorescence spectroscopy, edn. 2 (Kluwer Academic/Plenum Publishers, New York, 1999).

    Book  Google Scholar 

  15. Georgiou, G. Analysis of large libraries of protein mutants using flow cytometry. Adv. Protein Chem. 55, 293–315 (2000).

    Article  CAS  Google Scholar 

  16. Boder, E.T. & Wittrup, K.D. Optimal screening of surface-displayed polypeptide libraries. Biotechnol. Progr. 14, 55–62 (1998).

    Article  CAS  Google Scholar 

  17. Xu, X. et al. Detection of programmed cell death using fluorescence energy transfer. Nucleic Acids Res. 26, 2034–2035 (1998).

    Article  CAS  Google Scholar 

  18. Takemoto, K., Nagai, T., Miyawaki, A. & Miura, M. Spatio-temporal activation of caspase revealed by indicator that is insensitive to environmental effects. J. Cell Biol. 160, 235–243 (2003).

    Article  CAS  Google Scholar 

  19. He, L. et al. Flow cytometric measurement of fluorescence (Forster) resonance energy transfer from cyan fluorescent protein to yellow fluorescent protein using single-laser excitation at 458 nm. Cytometry 53, 39–54 (2003).

    Article  Google Scholar 

  20. Ness, J.E. et al. Synthetic shuffling expands functional protein diversity by allowing amino acids to recombine independently. Nat. Biotechnol. 20, 1251–1255 (2002).

    Article  CAS  Google Scholar 

  21. Bessette, P.H., Mena, M.A., Nguyen, A.W. & Daugherty, P.S. Construction of designed protein libraries using gene assembly mutagenesis. in Directed Evolution Library Creation Methods and Protocols, vol. 231 (eds. Arnold, F.H. & Georgiou, G.) 29–37, (Humana Press, Totowa, 2003).

    Chapter  Google Scholar 

  22. Shapiro, H.M. & Perlmutter, N.G. Violet laser diodes as light sources for cytometry. Cytometry 44, 133–136 (2001).

    Article  CAS  Google Scholar 

  23. Stemmer, W.P., Crameri, A., Ha, K.D., Brennan, T.M. & Heyneker, H.L. Single-step assembly of a gene and entire plasmid from large numbers of oligodeoxyribonucleotides. Gene 164, 49–53 (1995).

    Article  CAS  Google Scholar 

  24. Guzman, L.M., Belin, D., Carson, M.J. & Beckwith, J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J. Bacteriol. 177, 4121–4130 (1995).

    Article  CAS  Google Scholar 

  25. Fromant, M., Blanquet, S. & Plateau, P. Direct random mutagenesis of gene-sized DNA fragments using polymerase chain reaction. Anal. Biochem. 224, 347–353 (1995).

    Article  CAS  Google Scholar 

  26. Miyazaki, K. & Takenouchi, M. Creating random mutagenesis libraries using megaprimer PCR of whole plasmid. Biotechniques 33, 1033–1038 (2002).

    Article  CAS  Google Scholar 

  27. Reid, B.G. & Flynn, G.C. Chromophore formation in green fluorescent protein. Biochemistry 36, 6786–6791 (1997).

    Article  CAS  Google Scholar 

  28. Miller, A.D., Miller, D.G., Garcia, J.V. & Lynch, C.M. Use of retroviral vectors for gene transfer and expression. Methods Enzymol. 217, 581–599 (1993).

    Article  CAS  Google Scholar 

  29. Miller, A.D. & Rosman, G.J. Improved retroviral vectors for gene transfer and expression. Biotechniques 7, 980–990 (1989).

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

We wish to acknowledge E. Lipman for helpful discussions, A. Mikhailovsky and D. Korystov for lifetime measurement assistance and P. Bessette for critically reading the manuscript. We further acknowledge the generous support of this project by the National Institutes of Health-National Institute of Biomedical Imaging and Bioengineering grant EB-000205 and a National Science Foundation graduate fellowship to A.W.N.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Patrick S Daugherty.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Sorting the synthetically shuffled CFP library (Library 4) for high CFP fluorescence and high FRET-on signal. (PDF 1023 kb)

Supplementary Fig. 2

Fluorescence decay data of fluorescent protein variants. (PDF 358 kb)

Supplementary Fig. 3

Locations of amino acid substitutions in the FRET optimized variants CyPet and YPet. (PDF 695 kb)

Supplementary Fig. 4

Native protein electrophoresis of fluorescent protein variants. (PDF 1170 kb)

Supplementary Fig. 5

Concentration dependent FRET between donor and acceptor pairs. (PDF 69 kb)

Supplementary Table 1

Fluorescence lifetime analysis of CFP and YFP variants (DOC 36 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nguyen, A., Daugherty, P. Evolutionary optimization of fluorescent proteins for intracellular FRET. Nat Biotechnol 23, 355–360 (2005). https://doi.org/10.1038/nbt1066

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1066

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing