Review Article | Published:

Recombinant protein folding and misfolding in Escherichia coli

Nature Biotechnology volume 22, pages 13991408 (2004) | Download Citation

Subjects

Abstract

The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1.

    Protein expression technologies: current status and future trends (Horizon Biosciences, Norfolk, 2004).

  2. 2.

    A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J. 10, 5–9 (1996).

  3. 3.

    & Join the crowd. Nature 425, 27–28 (2003).

  4. 4.

    & Molecular characterization of β-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol. Prog. 9, 539–547 (1993).

  5. 5.

    , , & Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).

  6. 6.

    , & Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett. 169, 9–15 (1998).

  7. 7.

    , & Structure and morphology of inclusion bodies in Escherichia coli. Bio/Technology 9, 725–730 (1991).

  8. 8.

    , , & Size and density of inclusion bodies. Bio/Technology 4, 553–557 (1986).

  9. 9.

    , , & Nativelike secondary structure in interleukin 1-β inclusion bodies by attenuated total reflectance FTIR. Biochemistry 33, 2628–2634 (1994).

  10. 10.

    , , & Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8 (2003).

  11. 11.

    & Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Biotechnol. Prog. 16, 1000–1007 (2000).

  12. 12.

    & Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

  13. 13.

    & in Protein expression technologies: current status and future trends. (ed. Baneyx, F.) 85–148 (Horizon Biosciences, Norfolk, UK, 2004).

  14. 14.

    et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl. Acad. Sci. USA 98, 14244–14249 (2001).

  15. 15.

    et al. Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 47, 1317–1328 (2003).

  16. 16.

    , , & In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).

  17. 17.

    Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64–93 (2002).

  18. 18.

    & Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274, 9937–9945 (1999).

  19. 19.

    , , & The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).

  20. 20.

    & Redox-regulated molecular chaperones. Cell. Mol. Life Sci. 59, 1624–1631 (2002).

  21. 21.

    , , , & Identification of a redox-regulated chaperone network. EMBO J. 23, 160–168 (2004).

  22. 22.

    , , & Characterization of the Escherichia coli YedU protein as a molecular chaperone. Biochem. Biophys. Res. Commun. 301, 430–436 (2003).

  23. 23.

    , , & Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J. Biol. Chem. 277, 46026–46034 (2002).

  24. 24.

    , & Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe thermal stress conditions. Mol. Microbiol. 51, 849–859 (2004).

  25. 25.

    , , & The 1.6-Å crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100, 3137–3142 (2003).

  26. 26.

    , , & A new native EcHsp31 crystal structure suggests key role of structural flexibility for chaperone function. Protein Sci. 13, 269–277 (2004).

  27. 27.

    , , & The linker-loop region of E. coli chaperone Hsp31 functions as a thermal gate that modulates high affinity substrate binding at elevated temperatures. Proc. Natl. Acad. Sci. USA 101, 8587–8592 (2004).

  28. 28.

    , & Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb. Cell Fact. 3, 1 (2004).

  29. 29.

    et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

  30. 30.

    et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).

  31. 31.

    , , , & Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595 (2003).

  32. 32.

    , , , & Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

  33. 33.

    ClpB cooperates with DnaK, DnaJ and GrpE in suppressing protein aggregation. J. Biol. Chem. 274, 28083–28086 (1999).

  34. 34.

    , , & Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275, 21107–21113 (2000).

  35. 35.

    , & Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. (in the press) (2004).

  36. 36.

    , & The bacterial translocase: a dynamic protein channel complex. Cell. Mol. Life Sci. 60, 2034–2052 (2003).

  37. 37.

    , & Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172–1177 (2000).

  38. 38.

    , & Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 10, 239–245 (1991).

  39. 39.

    , & in Molecular chaperones in the cell (ed. Lund, P.) 35–60 (Oxford University Press, New York, 2001).

  40. 40.

    , & The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8, 492–498 (2001).

  41. 41.

    et al. Trigger factor binds to ribosome-signal recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004).

  42. 42.

    , , & Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J. Biol. Chem. 277, 29825–29831 (2002).

  43. 43.

    & An alternative model of the twin arginine translocation system. Mircobiol. Res. 158, 7–17 (2003).

  44. 44.

    & Moving folded protein across the bacterial cell membrane. Microbiology 149, 547–556 (2003).

  45. 45.

    et al. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 17, 3640–3650 (1998).

  46. 46.

    & A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996).

  47. 47.

    , & Skp, a molecular chaperone of gram-negative bacteria is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

  48. 48.

    & Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).

  49. 49.

    , & New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21, 871–884 (1996).

  50. 50.

    , & Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001).

  51. 51.

    et al. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335, 595–608 (2004).

  52. 52.

    , , , & The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001).

  53. 53.

    & Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498 (2002).

  54. 54.

    & The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278, 49316–49322 (2003).

  55. 55.

    & Disulfide bond isomerization in prokaryotes. Biochemistry 42, 1179–1185 (2003).

  56. 56.

    , & Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135 (2003).

  57. 57.

    et al. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7, 196–199 (2000).

  58. 58.

    , , , & Identification and characterization of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15, 6899–6909 (1996).

  59. 59.

    , , , & Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).

  60. 60.

    Protein unfolding—an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).

  61. 61.

    et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).

  62. 62.

    , , & ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. J. Struct. Biol. 146, 217–226 (2004).

  63. 63.

    et al. The structure of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800–805 (2000).

  64. 64.

    , , & The ClpXP and ClpAP proteases degrade proteins with carboxyl-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

  65. 65.

    , & Targeted delivery of an ssrA-tagged substrate by the protein SspB to it cognate AAA+ protein ClpX. Mol. Cell 12, 373–380 (2003).

  66. 66.

    , , & ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

  67. 67.

    & & FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146, 123–129 (2004).

  68. 68.

    , , , & Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

  69. 69.

    et al. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J. Bacteriol. 184, 5762–5771 (2002).

  70. 70.

    , & A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

  71. 71.

    et al. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci. 4, 1507–1515 (1995).

  72. 72.

    et al. PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem. 277, 39443–39449 (2002).

  73. 73.

    , , , & OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by Its PDZ domain. Cell 113, 61–71 (2003).

  74. 74.

    & Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J. Bacteriol. 178, 1146–1153 (1996).

  75. 75.

    & Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high molecular weight substrates in vivo. J. Bacteriol. 173, 2696–2703 (1991).

  76. 76.

    et al. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J. 20, 5033–5039 (2001).

  77. 77.

    , , & A novel activity of OmpT. Proteolysis under extreme denaturing conditions. J. Biol. Chem. 270, 12990–12994 (1995).

  78. 78.

    , , , & Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).

  79. 79.

    , & Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl. Acad. Sci. USA 99, 7373–7377 (2002).

  80. 80.

    & Expression of aggregation-prone proteins at low temperatures: a comparative study of the E. coli cspA and tac promoter systems. Protein Expr. Purif. 9, 211–218 (1997).

  81. 81.

    , & Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238, 325–332 (1999).

  82. 82.

    , & Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol. Prog. 14, 714–721 (1998).

  83. 83.

    et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877–882 (2004).

  84. 84.

    & Improving heterologous protein folding via molecular chaperone and foldase co-expression. Methods Mol. Biol. 205, 171–197 (2003).

  85. 85.

    , , & Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884–889 (2000).

  86. 86.

    et al. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 8428–8432 (1995).

  87. 87.

    & Influence of the GroE molecular chaperone machine on the in vitro folding of Escherichia coli β-galactosidase. Protein Sci. 5, 478–487 (1996).

  88. 88.

    , , , & Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64, 1694–1699 (1998).

  89. 89.

    et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).

  90. 90.

    , , , & Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nat. Biotechnol. 15, 581–585 (1997).

  91. 91.

    & Role of molecular chaperones in inclusion body formation. FEBS Lett. 537, 215–221 (2003).

  92. 92.

    & Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).

  93. 93.

    , , & Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).

  94. 94.

    , & Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17, 5543–5550 (1998).

  95. 95.

    & Escherichia coli alkaline phosphatase localized to the cytoplasm acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. J. Bacteriol. 177, 3764–3770 (1995).

  96. 96.

    , , & The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272, 15661–15667 (1997).

  97. 97.

    , , & Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96, 13703–13708 (1999).

  98. 98.

    , , , & Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J. Mol. Biol. 320, 1–10 (2002).

  99. 99.

    , , , & Production of correctly folded Fab antibody fragments in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23, 338–347 (2001).

  100. 100.

    , , , & Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release and purification. Protein Expr. Purif. 6, 481–486 (1995).

  101. 101.

    & TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. Protein Expr. Purif. 14, 13–22 (1998).

  102. 102.

    , & Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli. Appl. Environ. Microbiol. 62, 55–60 (1996).

  103. 103.

    , & prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc. Natl. Acad. Sci. USA 93, 5953–5957 (1996).

  104. 104.

    et al. PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J. 17, 3631–3639 (1998).

  105. 105.

    , & Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J. Bacteriol. 185, 5697–5705 (2003).

  106. 106.

    & Trigger factor retards protein export in Escherichia coli. J. Biol. Chem. 277, 43527–43535 (2002).

  107. 107.

    , & Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. USA 100, 6115–6120 (2003).

  108. 108.

    , , & Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J. Bacteriol. 186, 366–373 (2004).

  109. 109.

    & Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380 (1998).

  110. 110.

    & The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA.I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17100–17105 (2000).

  111. 111.

    & Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343 (1999).

  112. 112.

    & Secretory production of human leptin in Escherichia coli. Biotechnol. Bioeng. 67, 398–407 (2000).

  113. 113.

    , & Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66, 3960–3965 (2000).

  114. 114.

    , & Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J. Biol. Chem. 276, 14393–14399 (2001).

  115. 115.

    , & Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64, 4891–4896 (1998).

  116. 116.

    & Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP-deficient Escherichia coli strain. Arch. Microbiol. 167, 280–283 (1997).

  117. 117.

    & The effect of sugars on β-lactamase aggregation in Escherichia coli. Biotechnol. Prog. 4, 97–101 (1988).

  118. 118.

    , & The effects of induction conditions on production of a soluble anti-tumor SFv in Escherichia coli. Prot. Eng. 7, 1401–1406 (1994).

  119. 119.

    & Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology 12, 1107–1110 (1994).

  120. 120.

    , , & Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem. J. 371, 965–972 (2003).

  121. 121.

    et al. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25328–25331 (1995).

  122. 122.

    , , , & Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111, 1027–1039 (2002).

  123. 123.

    et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

  124. 124.

    et al. A new strategy for the synthesis of glycoproteins. Science 303, 371–373 (2004).

Download references

Acknowledgements

This work was supported by National Science Fund award BES-0097430.

Author information

Affiliations

  1. Departments of Chemical Engineering and Bioengineering, University of Washington, Box 351750, Seattle, Washington 98195, USA.

    • François Baneyx
    •  & Mirna Mujacic

Authors

  1. Search for François Baneyx in:

  2. Search for Mirna Mujacic in:

Competing interests

The authors declare no competing financial interests.

Corresponding author

Correspondence to François Baneyx.

About this article

Publication history

Published

DOI

https://doi.org/10.1038/nbt1029

Further reading