Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Recombinant protein folding and misfolding in Escherichia coli

Abstract

The past 20 years have seen enormous progress in the understanding of the mechanisms used by the enteric bacterium Escherichia coli to promote protein folding, support protein translocation and handle protein misfolding. Insights from these studies have been exploited to tackle the problems of inclusion body formation, proteolytic degradation and disulfide bond generation that have long impeded the production of complex heterologous proteins in a properly folded and biologically active form. The application of this information to industrial processes, together with emerging strategies for creating designer folding modulators and performing glycosylation all but guarantee that E. coli will remain an important host for the production of both commodity and high value added proteins.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Chaperone-assisted protein folding in the cytoplasm of E. coli.
Figure 2: Export and periplasmic folding pathways.

Similar content being viewed by others

References

  1. Baneyx, F. Protein expression technologies: current status and future trends (Horizon Biosciences, Norfolk, 2004).

    Google Scholar 

  2. Lorimer, G.H. A quantitative assessment of the role of the chaperonin proteins in protein folding in vivo. FASEB J. 10, 5–9 (1996).

    Article  PubMed  CAS  Google Scholar 

  3. Ellis, R.J. & Minton, A.P. Join the crowd. Nature 425, 27–28 (2003).

    Article  PubMed  CAS  Google Scholar 

  4. Valax, P. & Georgiou, G. Molecular characterization of β-lactamase inclusion bodies produced in Escherichia coli. 1. Composition. Biotechnol. Prog. 9, 539–547 (1993).

    Article  PubMed  CAS  Google Scholar 

  5. Allen, S.P., Polazzi, J.O., Gierse, J.K. & Easton, A.M. Two novel heat shock genes encoding proteins produced in response to heterologous protein expression in Escherichia coli. J. Bacteriol. 174, 6938–6947 (1992).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  6. Carrió, M.M., Corchero, J.L. & Villaverde, A. Dynamics of in vivo protein aggregation: building inclusion bodies in recombinant bacteria. FEMS Microbiol. Lett. 169, 9–15 (1998).

    Article  PubMed  Google Scholar 

  7. Bowden, G.A., Paredes, A.M. & Georgiou, G. Structure and morphology of inclusion bodies in Escherichia coli. Bio/Technology 9, 725–730 (1991).

    CAS  Google Scholar 

  8. Taylor, G., Hoare, M., Gray, D.R. & Martson, F.A.O. Size and density of inclusion bodies. Bio/Technology 4, 553–557 (1986).

    CAS  Google Scholar 

  9. Oberg, K., Chrunyk, B.A., Wetzel, R. & Fink, A.L. Nativelike secondary structure in interleukin 1-β inclusion bodies by attenuated total reflectance FTIR. Biochemistry 33, 2628–2634 (1994).

    Article  PubMed  CAS  Google Scholar 

  10. Tsumoto, K., Ejima, D., Kumagai, I. & Arakawa, T. Practical considerations in refolding proteins from inclusion bodies. Protein Expr. Purif. 28, 1–8 (2003).

    Article  PubMed  CAS  Google Scholar 

  11. Hoffmann, F. & Rinas, U. Kinetics of heat-shock response and inclusion body formation during temperature-induced production of basic fibroblast growth factor in high-cell-density cultures of recombinant Escherichia coli. Biotechnol. Prog. 16, 1000–1007 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. Hartl, F.U. & Hayer-Hartl, M. Molecular chaperones in the cytosol: from nascent chain to folded protein. Science 295, 1852–1858 (2002).

    Article  PubMed  CAS  Google Scholar 

  13. Mujacic, M. & Baneyx, F. in Protein expression technologies: current status and future trends. (ed. Baneyx, F.) 85–148 (Horizon Biosciences, Norfolk, UK, 2004).

    Google Scholar 

  14. Patzelt, H. et al. Binding specificity of Escherichia coli trigger factor. Proc. Natl. Acad. Sci. USA 98, 14244–14249 (2001).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  15. Deuerling, E. et al. Trigger factor and DnaK possess overlapping substrate pools and binding specificities. Mol. Microbiol. 47, 1317–1328 (2003).

    Article  PubMed  CAS  Google Scholar 

  16. Ewalt, K.L., Hendrick, J.P., Houry, W.A. & Hartl, F.U. In vivo observation of polypeptide flux through the bacterial chaperonin system. Cell 90, 491–500 (1997).

    Article  PubMed  CAS  Google Scholar 

  17. Narberhaus, F. Alpha-crystallin-type heat shock proteins: socializing minichaperones in the context of a multichaperone network. Microbiol. Mol. Biol. Rev. 66, 64–93 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  18. Shearstone, J.R. & Baneyx, F. Biochemical characterization of the small heat shock protein IbpB from Escherichia coli. J. Biol. Chem. 274, 9937–9945 (1999).

    Article  PubMed  CAS  Google Scholar 

  19. Veinger, L., Diamant, S., Buchner, J. & Goloubinoff, P. The small heat-shock protein IbpB from Escherichia coli stabilizes stress-denatured proteins for subsequent refolding by a multichaperone network. J. Biol. Chem. 273, 11032–11037 (1998).

    Article  PubMed  CAS  Google Scholar 

  20. Graf, P.C. & Jakob, U. Redox-regulated molecular chaperones. Cell. Mol. Life Sci. 59, 1624–1631 (2002).

    Article  PubMed  CAS  Google Scholar 

  21. Hoffmann, J.H., Linke, K., Graf, P.C., Lilie, H. & Jakob, U. Identification of a redox-regulated chaperone network. EMBO J. 23, 160–168 (2004).

    Article  PubMed  CAS  Google Scholar 

  22. Malki, A., Kern, R., Abdallah, J. & Richarme, G. Characterization of the Escherichia coli YedU protein as a molecular chaperone. Biochem. Biophys. Res. Commun. 301, 430–436 (2003).

    Article  PubMed  CAS  Google Scholar 

  23. Sastry, M.S.R., Korotkov, K., Brodsky, Y. & Baneyx, F. Hsp31, the Escherichia coli yedU gene product, is a molecular chaperone whose activity is inhibited by ATP at high temperatures. J. Biol. Chem. 277, 46026–46034 (2002).

    Article  PubMed  CAS  Google Scholar 

  24. Mujacic, M., Bader, M.W. & Baneyx, F. Escherichia coli Hsp31 functions as a holding chaperone that cooperates with the DnaK-DnaJ-GrpE system in the management of protein misfolding under severe thermal stress conditions. Mol. Microbiol. 51, 849–859 (2004).

    Article  PubMed  CAS  Google Scholar 

  25. Quigley, P.M., Korotkov, K., Baneyx, F. & Hol, W.G.J. The 1.6-Å crystal structure of the class of chaperones represented by Escherichia coli Hsp31 reveals a putative catalytic triad. Proc. Natl. Acad. Sci. USA 100, 3137–3142 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  26. Quigley, P.M., Korotkov, K., Baneyx, F. & Hol, W.G.J. A new native EcHsp31 crystal structure suggests key role of structural flexibility for chaperone function. Protein Sci. 13, 269–277 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  27. Sastry, M.S.R., Quigley, P.M., Hol, W.G.J. & Baneyx, F. The linker-loop region of E. coli chaperone Hsp31 functions as a thermal gate that modulates high affinity substrate binding at elevated temperatures. Proc. Natl. Acad. Sci. USA 101, 8587–8592 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  28. Weibezahn, J., Bukau, B. & Mogk, A. Unscrambling an egg: protein disaggregation by AAA+ proteins. Microb. Cell Fact. 3, 1 (2004).

    Article  PubMed  PubMed Central  Google Scholar 

  29. Lee, S. et al. The structure of ClpB. A molecular chaperone that rescues proteins from an aggregated state. Cell 115, 229–240 (2003).

    Article  PubMed  CAS  Google Scholar 

  30. Schlieker, C. et al. Substrate recognition by the AAA+ chaperone ClpB. Nat. Struct. Mol. Biol. 11, 607–615 (2004).

    Article  PubMed  CAS  Google Scholar 

  31. Mogk, A., Deuerling, E., Vorderwulbecke, S., Vierling, E. & Bukau, B. Small heat shock proteins, ClpB and the DnaK system form a functional triade in reversing protein aggregation. Mol. Microbiol. 50, 585–595 (2003).

    Article  PubMed  CAS  Google Scholar 

  32. Goloubinoff, P., Mogk, A., Ben Zvi, A.P., Tomoyasu, T. & Bukau, B. Sequential mechanism of solubilization and refolding of stable protein aggregates by a bichaperone network. Proc. Natl. Acad. Sci. USA 96, 13732–13737 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  33. Zolkiewski, M. ClpB cooperates with DnaK, DnaJ and GrpE in suppressing protein aggregation. J. Biol. Chem. 274, 28083–28086 (1999).

    Article  PubMed  CAS  Google Scholar 

  34. Diamant, S., Ben-Zvi, A.P., Bukau, B. & Goloubinoff, P. Size-dependent disaggregation of stable protein aggregates by the DnaK chaperone machinery. J. Biol. Chem. 275, 21107–21113 (2000).

    Article  PubMed  CAS  Google Scholar 

  35. Zietkiewicz, S., Krzewska, J. & Liberek, K. Successive and synergistic action of the Hsp70 and Hsp100 chaperones in protein disaggregation. J. Biol. Chem. (in the press) (2004).

  36. de Keyzer, J., van der Does, C. & Driessen, A.J. The bacterial translocase: a dynamic protein channel complex. Cell. Mol. Life Sci. 60, 2034–2052 (2003).

    Article  PubMed  CAS  Google Scholar 

  37. Xu, Z., Knafels, J.D. & Yoshino, K. Crystal structure of the bacterial protein export chaperone SecB. Nat. Struct. Biol. 7, 1172–1177 (2000).

    Article  PubMed  CAS  Google Scholar 

  38. Altman, E., Kumamoto, C.A. & Emr, S.D. Heat-shock proteins can substitute for SecB function during protein export in Escherichia coli. EMBO J. 10, 239–245 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  39. Harms, N., Luirink, J. & Oudega, B. in Molecular chaperones in the cell (ed. Lund, P.) 35–60 (Oxford University Press, New York, 2001).

    Google Scholar 

  40. Driessen, A.J.M., Manting, E.H. & van der Does, C. The structural basis of protein targeting and translocation in bacteria. Nat. Struct. Biol. 8, 492–498 (2001).

    Article  PubMed  CAS  Google Scholar 

  41. Buskiewicz, I. et al. Trigger factor binds to ribosome-signal recognition particle (SRP) complexes and is excluded by binding of the SRP receptor. Proc. Natl. Acad. Sci. USA 101, 7902–7906 (2004).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  42. DeLisa, M.P., Samuelson, P., Palmer, T. & Georgiou, G. Genetic analysis of the twin arginine translocator secretion pathway in bacteria. J. Biol. Chem. 277, 29825–29831 (2002).

    Article  PubMed  CAS  Google Scholar 

  43. Brüser, T. & Sanders, C. An alternative model of the twin arginine translocation system. Mircobiol. Res. 158, 7–17 (2003).

    Google Scholar 

  44. Palmer, T. & Berks, B.C. Moving folded protein across the bacterial cell membrane. Microbiology 149, 547–556 (2003).

    Article  PubMed  CAS  Google Scholar 

  45. Sargent, F. et al. Overlapping functions of components of a bacterial Sec-independent protein export pathway. EMBO J. 17, 3640–3650 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  46. Chen, R. & Henning, U. A periplasmic protein (Skp) of Escherichia coli selectively binds a class of outer membrane proteins. Mol. Microbiol. 19, 1287–1294 (1996).

    Article  PubMed  CAS  Google Scholar 

  47. Schafer, U., Beck, K. & Muller, M. Skp, a molecular chaperone of gram-negative bacteria is required for the formation of soluble periplasmic intermediates of outer membrane proteins. J. Biol. Chem. 274, 24567–24574 (1999).

    Article  PubMed  CAS  Google Scholar 

  48. Walton, T.A. & Sousa, M.C. Crystal structure of Skp, a prefoldin-like chaperone that protects soluble and membrane proteins from aggregation. Mol. Cell 15, 367–374 (2004).

    Article  PubMed  CAS  Google Scholar 

  49. Missiakas, D., Betton, J.M. & Raina, S. New components of protein folding in extracytoplasmic compartments of Escherichia coli SurA, FkpA and Skp/OmpH. Mol. Microbiol. 21, 871–884 (1996).

    Article  PubMed  CAS  Google Scholar 

  50. Arie, J.P., Sassoon, N. & Betton, J.M. Chaperone function of FkpA, a heat shock prolyl isomerase, in the periplasm of Escherichia coli. Mol. Microbiol. 39, 199–210 (2001).

    Article  PubMed  CAS  Google Scholar 

  51. Saul, F.A. et al. Structural and functional studies of FkpA from Escherichia coli, a cis/trans peptidyl-prolyl isomerase with chaperone activity. J. Mol. Biol. 335, 595–608 (2004).

    Article  PubMed  CAS  Google Scholar 

  52. Behrens, S., Maier, R., de Cock, H., Schmid, F.X. & Gross, C.A. The SurA periplasmic PPIase lacking its parvulin domains functions in vivo and has chaperone activity. EMBO J. 20, 285–294 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  53. Bitto, E. & McKay, D.B. Crystallographic structure of SurA, a molecular chaperone that facilitates folding of outer membrane porins. Structure 10, 1489–1498 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. Bitto, E. & McKay, D.B. The periplasmic molecular chaperone protein SurA binds a peptide motif that is characteristic of integral outer membrane proteins. J. Biol. Chem. 278, 49316–49322 (2003).

    Article  PubMed  CAS  Google Scholar 

  55. Hiniker, A. & Bardwell, J.C.A. Disulfide bond isomerization in prokaryotes. Biochemistry 42, 1179–1185 (2003).

    Article  PubMed  CAS  Google Scholar 

  56. Kadokura, H., Katzen, F. & Beckwith, J. Protein disulfide bond formation in prokaryotes. Annu. Rev. Biochem. 72, 111–135 (2003).

    Article  PubMed  CAS  Google Scholar 

  57. McCarthy, A.A. et al. Crystal structure of the protein disulfide bond isomerase, DsbC, from Escherichia coli. Nat. Struct. Biol. 7, 196–199 (2000).

    Article  PubMed  CAS  Google Scholar 

  58. Missiakas, D., Schwager, F., Betton, J.M., Georgopoulos, C. & Raina, S. Identification and characterization of HslV HslU (ClpQ ClpY) proteins involved in overall proteolysis of misfolded proteins in Escherichia coli. EMBO J. 15, 6899–6909 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  59. Tomoyasu, T., Mogk, A., Langen, H., Goloubinoff, P. & Bukau, B. Genetic dissection of the roles of chaperones and proteases in protein folding and degradation in the Escherichia coli cytosol. Mol. Microbiol. 40, 397–413 (2001).

    Article  PubMed  CAS  Google Scholar 

  60. Matouschek, A. Protein unfolding—an important process in vivo? Curr. Opin. Struct. Biol. 13, 98–109 (2003).

    Article  PubMed  CAS  Google Scholar 

  61. Kim, Y.-I. et al. Molecular determinants of complex formation between Clp/Hsp100 ATPases and the ClpP peptidase. Nat. Struct. Biol. 8, 230–233 (2001).

    Article  PubMed  CAS  Google Scholar 

  62. Ortega, J., Lee, H.S., Maurizi, M.R. & Steven, A.C. ClpA and ClpX ATPases bind simultaneously to opposite ends of ClpP peptidase to form active hybrid complexes. J. Struct. Biol. 146, 217–226 (2004).

    Article  PubMed  CAS  Google Scholar 

  63. Bochtler, M. et al. The structure of HslU and the ATP-dependent protease HslU-HslV. Nature 403, 800–805 (2000).

    Article  PubMed  CAS  Google Scholar 

  64. Gottesman, S., Roche, E., Zhou, Y.N. & Sauer, R.T. The ClpXP and ClpAP proteases degrade proteins with carboxyl-terminal peptide tails added by the SsrA-tagging system. Genes Dev. 12, 1338–1347 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  65. Dougan, D.A., Weber-Ban, E. & Bukau, B. Targeted delivery of an ssrA-tagged substrate by the protein SspB to it cognate AAA+ protein ClpX. Mol. Cell 12, 373–380 (2003).

    Article  PubMed  CAS  Google Scholar 

  66. Dougan, D.A., Reid, B.G., Horwich, A.L. & Bukau, B. ClpS, a substrate modulator of the ClpAP machine. Mol. Cell 9, 673–683 (2002).

    Article  PubMed  CAS  Google Scholar 

  67. Saikawa, N. & Akiyama, Y. & Ito, K. FtsH exists as an exceptionally large complex containing HflKC in the plasma membrane of Escherichia coli. J. Struct. Biol. 146, 123–129 (2004).

    Article  PubMed  CAS  Google Scholar 

  68. Krojer, T., Garrido-Franco, M., Huber, R., Ehrmann, M. & Clausen, T. Crystal structure of DegP (HtrA) reveals a new protease-chaperone machine. Nature 416, 455–459 (2002).

    Article  PubMed  CAS  Google Scholar 

  69. Jones, C.H. et al. Escherichia coli DegP protease cleaves between paired hydrophobic residues in a natural substrate: the PapA pilin. J. Bacteriol. 184, 5762–5771 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  70. Spiess, C., Beil, A. & Ehrmann, M. A temperature-dependent switch from chaperone to protease in a widely conserved heat shock protein. Cell 97, 339–347 (1999).

    Article  PubMed  CAS  Google Scholar 

  71. Keiler, K.C. et al. C-terminal specific protein degradation: activity and substrate specificity of the Tsp protease. Protein Sci. 4, 1507–1515 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  72. Spiers, A. et al. PDZ domains facilitate binding of high temperature requirement protease A (HtrA) and tail-specific protease (Tsp) to heterologous substrates through recognition of the small stable RNA A (ssrA)-encoded peptide. J. Biol. Chem. 277, 39443–39449 (2002).

    Article  PubMed  CAS  Google Scholar 

  73. Walsh, N.P., Alba, B.M., Bose, B., Gross, C.A. & Sauer, R.T. OMP peptide signals initiate the envelope-stress response by activating DegS protease via relief of inhibition mediated by Its PDZ domain. Cell 113, 61–71 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. Waller, P.R. & Sauer, R.T. Characterization of degQ and degS, Escherichia coli genes encoding homologs of the DegP protease. J. Bacteriol. 178, 1146–1153 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  75. Baneyx, F. & Georgiou, G. Construction and characterization of Escherichia coli strains deficient in multiple secreted proteases: protease III degrades high molecular weight substrates in vivo. J. Bacteriol. 173, 2696–2703 (1991).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  76. Vandeputte-Rutten, L. et al. Crystal structure of the outer membrane protease OmpT from Escherichia coli suggests a novel catalytic site. EMBO J. 20, 5033–5039 (2001).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  77. White, C.B., Chen, Q., Kenyon, G.L. & Babbitt, P.C. A novel activity of OmpT. Proteolysis under extreme denaturing conditions. J. Biol. Chem. 270, 12990–12994 (1995).

    Article  PubMed  CAS  Google Scholar 

  78. Khlebnikov, A., Datsenko, K.A., Skaug, T., Wanner, B.L. & Keasling, J.D. Homogeneous expression of the PBAD promoter in Escherichia coli by constitutive expression of the low-affinity high-capacity AraE transporter. Microbiology 147, 3241–3247 (2001).

    Article  PubMed  CAS  Google Scholar 

  79. Morgan-Kiss, R.M., Wadler, C. & Cronan, J.E.J. Long-term and homogeneous regulation of the Escherichia coli araBAD promoter by use of a lactose transporter of relaxed specificity. Proc. Natl. Acad. Sci. USA 99, 7373–7377 (2002).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  80. Vasina, J.A. & Baneyx, F. Expression of aggregation-prone proteins at low temperatures: a comparative study of the E. coli cspA and tac promoter systems. Protein Expr. Purif. 9, 211–218 (1997).

    Article  PubMed  CAS  Google Scholar 

  81. Mujacic, M., Cooper, K.W. & Baneyx, F. Cold-inducible cloning vectors for low-temperature protein expression in Escherichia coli: application to the production of a toxic and proteolytically sensitive fusion protein. Gene 238, 325–332 (1999).

    Article  PubMed  CAS  Google Scholar 

  82. Vasina, J.A., Peterson, M.S. & Baneyx, F. Scale-up and optimization of the low-temperature inducible cspA promoter system. Biotechnol. Prog. 14, 714–721 (1998).

    Article  PubMed  CAS  Google Scholar 

  83. Qing, G. et al. Cold-shock induced high-yield protein production in Escherichia coli. Nat. Biotechnol. 22, 877–882 (2004).

    Article  PubMed  CAS  Google Scholar 

  84. Baneyx, F. & Palumbo, J.L. Improving heterologous protein folding via molecular chaperone and foldase co-expression. Methods Mol. Biol. 205, 171–197 (2003).

    PubMed  CAS  Google Scholar 

  85. Nishihara, K., Kanemori, M., Yanagi, H. & Yura, T. Overexpression of trigger factor prevents aggregation of recombinant proteins in Escherichia coli. Appl. Environ. Microbiol. 66, 884–889 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  86. Roman, L.J. et al. High-level expression of functional rat neuronal nitric oxide synthase in Escherichia coli. Proc. Natl. Acad. Sci. USA 92, 8428–8432 (1995).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  87. Ayling, A. & Baneyx, F. Influence of the GroE molecular chaperone machine on the in vitro folding of Escherichia coli β-galactosidase. Protein Sci. 5, 478–487 (1996).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  88. Nishihara, K., Kanemori, M., Kitagawa, M., Yanaga, H. & Yura, T. Chaperone coexpression plasmids: differential and synergistic roles of DnaK-DnaJ-GrpE and GroEL-GroES in assisting folding of an allergen of Japanese cedar pollen, Cryj2, in Escherichia coli. Appl. Environ. Microbiol. 64, 1694–1699 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  89. Agashe, V.R. et al. Function of trigger factor and DnaK in multidomain protein folding: increase in yield at the expense of folding speed. Cell 117, 199–209 (2004).

    Article  PubMed  CAS  Google Scholar 

  90. Schneider, E.L., Thomas, J.G., Bassuk, J.A., Sage, E.H. & Baneyx, F. Manipulating the aggregation and oxidation of human SPARC in the cytoplasm of Escherichia coli. Nat. Biotechnol. 15, 581–585 (1997).

    Article  PubMed  CAS  Google Scholar 

  91. Carrió, M.M. & Villaverde, A. Role of molecular chaperones in inclusion body formation. FEBS Lett. 537, 215–221 (2003).

    Article  PubMed  CAS  Google Scholar 

  92. Ritz, D. & Beckwith, J. Roles of thiol-redox pathways in bacteria. Annu. Rev. Microbiol. 55, 21–48 (2001).

    Article  PubMed  CAS  Google Scholar 

  93. Derman, A.I., Prinz, W.A., Belin, D. & Beckwith, J. Mutations that allow disulfide bond formation in the cytoplasm of Escherichia coli. Science 262, 1744–1747 (1993).

    Article  PubMed  CAS  Google Scholar 

  94. Stewart, E.J., Åslund, F. & Beckwith, J. Disulfide bond formation in the Escherichia coli cytoplasm: an in vivo role reversal for the thioredoxins. EMBO J. 17, 5543–5550 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Derman, A.I. & Beckwith, J. Escherichia coli alkaline phosphatase localized to the cytoplasm acquires enzymatic activity in cells whose growth has been suspended: a caution for gene fusion studies. J. Bacteriol. 177, 3764–3770 (1995).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  96. Prinz, W.A., Åslund, F., Holmgren, A. & Beckwith, J. The role of the thioredoxin and glutaredoxin pathways in reducing protein disulfide bonds in the Escherichia coli cytoplasm. J. Biol. Chem. 272, 15661–15667 (1997).

    Article  PubMed  CAS  Google Scholar 

  97. Bessette, P.H., Åslund, F., Beckwith, J. & Georgiou, G. Efficient folding of proteins with multiple disulfide bonds in the Escherichia coli cytoplasm. Proc. Natl. Acad. Sci. USA 96, 13703–13708 (1999).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  98. Jurado, P., Ritz, D., Beckwith, J., de Lorenzo, V. & Fernandez, L.A. Production of functional single-chain Fv antibodies in the cytoplasm of Escherichia coli. J. Mol. Biol. 320, 1–10 (2002).

    Article  PubMed  CAS  Google Scholar 

  99. Levy, R., Weiss, R., Chen, G., Iverson, B.L. & Georgiou, G. Production of correctly folded Fab antibody fragments in the cytoplasm of Escherichia coli trxB gor mutants via the coexpression of molecular chaperones. Protein Expr. Purif. 23, 338–347 (2001).

    Article  PubMed  CAS  Google Scholar 

  100. Robbens, J., Raeymaekers, A., Steidler, L., Fiers, W. & Remaut, E. Production of soluble and active recombinant murine interleukin-2 in Escherichia coli: high level expression, Kil-induced release and purification. Protein Expr. Purif. 6, 481–486 (1995).

    Article  PubMed  CAS  Google Scholar 

  101. Wan, E. & Baneyx, F. TolAIII co-overexpression facilitates the recovery of periplasmic recombinant proteins into the growth medium of Escherichia coli. Protein Expr. Purif. 14, 13–22 (1998).

    Article  PubMed  CAS  Google Scholar 

  102. Bergès, H., Joseph-Liauzun, E. & Fayet, O. Combined effects of the signal sequence and the major chaperone proteins on the export of human cytokines in Escherichia coli. Appl. Environ. Microbiol. 62, 55–60 (1996).

    Article  PubMed  PubMed Central  Google Scholar 

  103. Nouwen, N., Kruijff, B. & Tommassen, J. prlA suppressors in Escherichia coli relieve the proton electrochemical gradient dependency of translocation of wild-type precursors. Proc. Natl. Acad. Sci. USA 93, 5953–5957 (1996).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  104. van der Wolk, J.P.W. et al. PrlA4 prevents the rejection of signal sequence defective preproteins by stabilizing the SecA-SecY interaction during the initiation of translocation. EMBO J. 17, 3631–3639 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  105. Bowers, C.W., Lau, F. & Silhavy, T.J. Secretion of LamB-LacZ by the signal recognition particle pathway of Escherichia coli. J. Bacteriol. 185, 5697–5705 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  106. Lee, H.C. & Bernstein, H.D. Trigger factor retards protein export in Escherichia coli. J. Biol. Chem. 277, 43527–43535 (2002).

    Article  PubMed  CAS  Google Scholar 

  107. DeLisa, M.P., Tullman, D. & Georgiou, G. Folding quality control in the export of proteins by the bacterial twin-arginine translocation pathway. Proc. Natl. Acad. Sci. USA 100, 6115–6120 (2003).

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  108. DeLisa, M.P., Lee, P., Palmer, T. & Georgiou, G. Phage shock protein PspA of Escherichia coli relieves saturation of protein export via the Tat pathway. J. Bacteriol. 186, 366–373 (2004).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  109. Bothmann, H. & Plückthun, A. Selection for a periplasmic factor improving phage display and functional periplasmic expression. Nat. Biotechnol. 16, 376–380 (1998).

    Article  PubMed  CAS  Google Scholar 

  110. Bothmann, H. & Plückthun, A. The periplasmic Escherichia coli peptidylprolyl cis,trans-isomerase FkpA.I. Increased functional expression of antibody fragments with and without cis-prolines. J. Biol. Chem. 275, 17100–17105 (2000).

    Article  PubMed  CAS  Google Scholar 

  111. Hayhurst, A. & Harris, W.J. Escherichia coli Skp chaperone coexpression improves solubility and phage display of single-chain antibody fragments. Protein Expr. Purif. 15, 336–343 (1999).

    Article  PubMed  CAS  Google Scholar 

  112. Jeong, K.J. & Lee, S.Y. Secretory production of human leptin in Escherichia coli. Biotechnol. Bioeng. 67, 398–407 (2000).

    Article  PubMed  CAS  Google Scholar 

  113. Kurokawa, Y., Yanagi, H. & Yura, T. Overexpression of protein disulfide isomerase DsbC stabilizes multiple-disulfide-bonded recombinant protein produced and transported to the periplasm in Escherichia coli. Appl. Environ. Microbiol. 66, 3960–3965 (2000).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  114. Kurokawa, Y., Yanagi, H. & Yura, T. Overproduction of bacterial protein disulfide isomerase (DsbC) and its modulator (DsbD) markedly enhances periplasmic production of human nerve growth factor in Escherichia coli. J. Biol. Chem. 276, 14393–14399 (2001).

    Article  PubMed  CAS  Google Scholar 

  115. Qiu, J., Swartz, J.R. & Georgiou, G. Expression of active human tissue-type plasminogen activator in Escherichia coli. Appl. Environ. Microbiol. 64, 4891–4896 (1998).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  116. Wulfing, C. & Rappuoli, R. Efficient production of heat-labile enterotoxin mutant proteins by overexpression of dsbA in a degP-deficient Escherichia coli strain. Arch. Microbiol. 167, 280–283 (1997).

    Article  PubMed  CAS  Google Scholar 

  117. Bowden, G.A. & Georgiou, G. The effect of sugars on β-lactamase aggregation in Escherichia coli. Biotechnol. Prog. 4, 97–101 (1988).

    Article  CAS  Google Scholar 

  118. Sawyer, J.R., Schlom, J. & Kashmiri, S.V.S. The effects of induction conditions on production of a soluble anti-tumor SFv in Escherichia coli. Prot. Eng. 7, 1401–1406 (1994).

    Article  CAS  Google Scholar 

  119. Meerman, H.J. & Georgiou, G. Construction and characterization of a set of E. coli strains deficient in all known loci affecting the proteolytic stability of secreted recombinant proteins. Bio/Technology 12, 1107–1110 (1994).

    Article  CAS  Google Scholar 

  120. Kern, R., Malki, A., Holmgren, A. & Richarme, G. Chaperone properties of Escherichia coli thioredoxin and thioredoxin reductase. Biochem. J. 371, 965–972 (2003).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  121. Yasukawa, T. et al. Increase of solubility of foreign proteins in Escherichia coli by coproduction of the bacterial thioredoxin. J. Biol. Chem. 270, 25328–25331 (1995).

    Article  PubMed  CAS  Google Scholar 

  122. Wang, J.D., Herman, C., Tipton, K.A., Gross, C.A. & Weissman, J.S. Directed evolution of substrate-optimized GroEL/S chaperonins. Cell 111, 1027–1039 (2002).

    Article  PubMed  CAS  Google Scholar 

  123. Wacker, M. et al. N-linked glycosylation in Campylobacter jejuni and its functional transfer into E. coli. Science 298, 1790–1793 (2002).

    Article  PubMed  CAS  Google Scholar 

  124. Zhang, Z. et al. A new strategy for the synthesis of glycoproteins. Science 303, 371–373 (2004).

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Fund award BES-0097430.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to François Baneyx.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baneyx, F., Mujacic, M. Recombinant protein folding and misfolding in Escherichia coli. Nat Biotechnol 22, 1399–1408 (2004). https://doi.org/10.1038/nbt1029

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1029

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing