Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Plant cell cultures for the production of recombinant proteins

Abstract

The use of whole plants for the synthesis of recombinant proteins has received a great deal of attention recently because of advantages in economy, scalability and safety compared with traditional microbial and mammalian production systems. However, production systems that use whole plants lack several of the intrinsic benefits of cultured cells, including the precise control over growth conditions, batch-to-batch product consistency, a high level of containment and the ability to produce recombinant proteins in compliance with good manufacturing practice. Plant cell cultures combine the merits of whole-plant systems with those of microbial and animal cell cultures, and already have an established track record for the production of valuable therapeutic secondary metabolites. Although no recombinant proteins have yet been produced commercially using plant cell cultures, there have been many proof-of-principle studies and several companies are investigating the commercial feasibility of such production systems.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Overview of biopharmaceutical production in plant cells.

Similar content being viewed by others

References

  1. Gamborg, O.L. Plant tissue culture. Biotechnology milestones. In Vitro Cell. Dev. Biol. 38, 84–92 (2002).

    Article  Google Scholar 

  2. Verpoorte, R., van der Heijden, R. & Memelink, J. Engineering the plant cell factory for secondary metabolite production. Transgenic Res. 9, 323–343; discussion 321 (2000).

    Article  PubMed  CAS  Google Scholar 

  3. Sijmons, P.C. et al. Production of correctly processed human serum albumin in transgenic plants. Bio/Technology 8, 217–221 (1990).

    PubMed  CAS  Google Scholar 

  4. Ma, J.K.-C., Drake, P.M.W. & Christou, P. The production of recombinant pharmaceutical proteins in plants. Nat. Rev. Genet. 4 (2003).

  5. Fischer, R., Stoger, E., Schillberg, S., Christou, P. & Twyman, R.M. Plant-based production of biopharmaceuticals. Curr. Opin. Plant Biol. 7, 152–158 (2004).

    Article  PubMed  CAS  Google Scholar 

  6. Twyman, R.M., Stoger, E., Schillberg, S., Christou, P. & Fischer, R. Molecular farming in plants: host systems and expression technology. Trends Biotechnol. 21, 570–578 (2003).

    Article  PubMed  CAS  Google Scholar 

  7. Drossard, J., Nähring, J.M., Hellwig, S. & Fischer, R. Production of engineered antibodies in tobacco plants and cell suspension cultures. in Antibody Engineering, New Technology, Application and Commercialization, vol. 2, IBC's 8th annual international conference on antibody engineering, 69–93 (IBC Library Services, Southborough, Massachusetts, 1997).

    Google Scholar 

  8. Fischer, R., Liao, Y.C. & Drossard, J. Affinity-purification of a TMV-specific recombinant full-size antibody from a transgenic tobacco suspension culture. J. Immunol. Methods 226, 1–10 (1999).

    Article  PubMed  CAS  Google Scholar 

  9. Kwon, T.H. et al. Expression and secretion of the heterodimeric protein interleukin-12 in plant cell suspension culture. Biotechnol. Bioeng. 81, 870–875 (2003).

    Article  PubMed  CAS  Google Scholar 

  10. Gomord, V. & Faye, L. Posttranslational modification of therapeutic proteins in plants. Curr. Opin. Plant Biol. 7, 171–181 (2004).

    Article  PubMed  CAS  Google Scholar 

  11. Doran, P.M. Foreign protein production in plant tissue cultures. Curr. Opin. Biotechnol. 11, 199–204 (2000).

    Article  PubMed  CAS  Google Scholar 

  12. Fischer, R., Liao, Y.C., Hoffmann, K., Schillberg, S. & Emans, N. Molecular farming of recombinant antibodies in plants. Biol. Chem. 380, 825–839 (1999).

    Article  PubMed  CAS  Google Scholar 

  13. Fischer, R., Emans, N., Schuster, F., Hellwig, S. & Drossard, J. Towards molecular farming in the future: using plant-cell-suspension cultures as bioreactors. Biotechnol. Appl. Biochem. 30, 109–112 (1999).

    PubMed  CAS  Google Scholar 

  14. Hilton, M.G. & Rhodes, M.J.C. Growth and hyoscyamine production of hairy root cultures of Datura stramonium in a modified stirred tank reactor. Appl. Microbiol. Biotechnol. 33, 132–138 (1990).

    Article  PubMed  CAS  Google Scholar 

  15. Sharp, J.M. & Doran, P.M. Strategies for enhancing monoclonal antibody accumulation in plant cell and organ cultures. Biotechnol. Prog. 17, 979–992 (2001).

    Article  PubMed  CAS  Google Scholar 

  16. Archambault, J. Large-scale (20-L) culture of surface-immobilized Catharanthus roseus cells. Enzyme Microb. Technol. 13, 882–892 (1991).

    Article  PubMed  CAS  Google Scholar 

  17. Kieran, P.M., MacLoughlin, P.F. & Malone, D.M. Plant cell suspension cultures: some engineering considerations. J. Biotechnol. 59, 39–52 (1997).

    Article  PubMed  CAS  Google Scholar 

  18. Schlatmann, J.E., ten Hoopen, H.J. & Heijnen, J.J. Large-scale production of secondary metabolites by plant cell cultures. in Plant Cell Culture Secondary Metabolism: Toward Industrial Application. (eds. DiCosmo, F. & Misawa, M.) 11–52 (CRC Press, Boca Raton, Florida, 1996).

    Google Scholar 

  19. Wen, W.S. Bioprocessing technology for plant cell suspension cultures. Appl. Biochem. Biotechnol. 50, 189–216 (1995).

    Article  Google Scholar 

  20. Desikan, R., Hancock, J.T., Neill, S.J., Coffey, M.J. & Jones, O.T. Elicitor-induced generation of active oxygen in suspension cultures of Arabidopsis thaliana. Biochem. Soc. Trans. 24, 199S (1996).

    Article  PubMed  CAS  Google Scholar 

  21. Seki, M., Ohzora, C., Takeda, M. & Furusaki, S. Taxol (Paclitaxel) production using free and immobilized cells of Taxus cuspidata. Biotechnol. Bioeng. 53, 214–219 (1997).

    Article  PubMed  CAS  Google Scholar 

  22. Van der Heijden, R., Verpoorte, R. & ten Hoopen, H.J. Cell and tissue cultures of Catharanthus roseus (L) Don G. A literature survey. Plant Cell Tissue Organ Cult. 18, 231–280 (1989).

    Article  Google Scholar 

  23. Hoehl, U., Upmaier, B. & Barz, W. Growth and nicotinate biotransformation in batch cultured and airlift fermenter grown soybean cell suspension cultures. Appl. Microbiol. Biotechnol. 28, 319–323 (1988).

    Article  CAS  Google Scholar 

  24. Daniell, H., Khan, M.S. & Allison, L. Milestones in chloroplast genetic engineering: an environmentally friendly era in biotechnology. Trends Plant Sci. 7, 84–91 (2002).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  25. Chen, M.-H., Liu, L.-F., Chen, Y.-R., Wu, H.-K. & Yu, S.-M. Expression of α-amylases, carbohydrate metabolism, and autophagy in cultured rice cells is co-ordinately regulated by sugar nutrient. Plant J. 6, 625–636 (1994).

    Article  PubMed  CAS  Google Scholar 

  26. Kwon, T.H., Kim, Y.S., Lee, J.H. & Yang, M.S. Production and secretion of biologically active human granulocyte-macrophage colony stimulating factor in transgenic tomato suspension cultures. Biotechnol. Lett. 25, 1571–1574 (2003).

    Article  PubMed  CAS  Google Scholar 

  27. Nagata, T., Nemoto, Y. & Seiichiro, H. Tobacco BY-2 cell line as the “HeLa” cell in the cell biology of higher plants. Int. Rev. Cytol. 132, 1–30 (1992).

    Article  CAS  Google Scholar 

  28. Murashige, T. & Skoog, F. A revised medium for rapid growth and bioassay for tobacco tissue cultures. Physiol. Plant. 15, 473–497 (1962).

    Article  CAS  Google Scholar 

  29. Gamborg, O.L., Murashige, T., Thorpe, T.A. & Vasil, I.K. Plant tissue culture media. In Vitro 12, 473–478 (1976).

    Article  PubMed  CAS  Google Scholar 

  30. White, P.R. The Cultivation of Animal and Plant Cells, edn. 2 (Ronald Press, New York, 1963).

    Google Scholar 

  31. Taticek, R.A., Lee, C.W.T. & Shuler, M.L. Large-scale insect and plant cell culture. Curr. Opin. Biotechnol. 5, 165–174 (1994).

    Article  PubMed  CAS  Google Scholar 

  32. Drapeau, D., Blanch, H.W. & Wilke, C.R. Growth kinetics of Dioscorea deltoidea and Catharanthus roseus in batch culture. Biotechnol. Bioeng. 28, 1555–1563 (1986).

    Article  PubMed  CAS  Google Scholar 

  33. Des Molles, D., Gomord, V., Bastin, M., Faye, L. & Courtois, D. Expression of a carrot invertase gene in tobacco suspension cells cultivated in batch and continuous culture conditions. J. Biosci. Bioeng. 87, 302–306 (1999).

    Article  CAS  Google Scholar 

  34. Hooker, B.S., Lee, J.M. & An, G. Cultivation of plant cells in a stirred tank reactor. Biotechnol. Bioeng. 35, 296–304 (1990).

    Article  PubMed  CAS  Google Scholar 

  35. Ten Hoopen, H.J.G., van Gulik, W.M. & Heijnen, J.J. Continuous culture of suspended plant cells. In Vitro Cell. Dev. Biol. 28, 115–120 (1992).

    Article  Google Scholar 

  36. Terashima, M. et al. Production of functional human α1-antitrypsin by plant cell culture. Appl. Microbiol. Biotechnol. 52, 516–523 (1999).

    Article  PubMed  CAS  Google Scholar 

  37. Torres, E. et al. Rice cell culture as an alternative production system for functional diagnostic and therapeutic antibodies. Transgenic Res. 8, 441–449 (1999).

    Article  PubMed  CAS  Google Scholar 

  38. Huang, J. et al. Expression of functional recombinant human lysozmye in transgenic rice cell culture. Transgenic Res. 11, 229–239 (2002).

    Article  PubMed  CAS  Google Scholar 

  39. Huang, J. et al. Expression and purification of functional human α1-antitrypsin from cultured plant cells. Biotechnol. Prog. 17, 126–133 (2001).

    Article  PubMed  CAS  Google Scholar 

  40. Smith, M.L., Mason, H.S. & Shuler, M.L. Hepatitis B surface antigen (HBsAg) expression in plant cell culture: kinetics of antigen accumulation in batch culture and its intracellular form. Biotechnol. Bioeng. 80, 812–822 (2002).

    Article  PubMed  CAS  Google Scholar 

  41. Sunil Kumar, G.B., Ganapathi, T.R., Revathi, C.-J., Prasad, K.S.N. & Bapat, V.A. Expression of hepatitis B surface antigen in tobacco cell suspension cultures. Protein Expr. Purif. 32, 10–17 (2003).

    Article  PubMed  CAS  Google Scholar 

  42. Carpita, N., Sabularse, D., Montezinos, D. & Delmer, D.P. Determination of the pore size of living plant cells. Science 205, 1144–1147 (1979).

    Article  PubMed  CAS  Google Scholar 

  43. Matsumoto, S., Ikura, K., Ueda, M. & Sasaki, R. Characterization of a human glycoprotein (erythropoietin) produced in cultured tobacco cells. Plant Mol. Biol. 27, 1163–1172 (1995).

    Article  PubMed  CAS  Google Scholar 

  44. Tsoi, B.M. & Doran, P.M. Effect of medium properties and additives on antibody stability and accumulation in suspended plant cell cultures. Biotechnol. Appl. Biochem. 35, 171–180 (2002).

    Article  PubMed  CAS  Google Scholar 

  45. Meijer, J.J., ten Hoopen, H.J.G., van Gameren, Y.M., Luyben, K.C.A.M. & Libbenga, K.R. Effects of hydrodynamic stress on the growth of plant cells in batch and continuous culture. Enzyme Microb. Technol. 16, 467–477 (1994).

    Article  CAS  Google Scholar 

  46. Yu, S.X., Kwok, K.H. & Doran, P.M. Effect of sucrose, exogenous product concentration, and other culture conditions on growth and steroidal alkaloid production by Solanum aviculare hairy roots. Enzyme Microb. Technol. 18, 238–243 (1996).

    Article  CAS  Google Scholar 

  47. Offringa, R. et al. Extrachromosomal homologous recombination and gene targeting in plant cells after Agrobacterium-mediated transformation. EMBO J. 9, 3077–3084 (1990).

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  48. Böhme, C., Schröder, M.B. Jung-Heiliger, H. & Lehmann, J. Plant cell suspension culture in a bench-scale fermenter with a newly designed membrane-stirrer for bubble-free aeration. Appl. Microbiol. Biotechnol. 48, 149154 (1997).

    Google Scholar 

  49. Doran, P. Design of reactors for plant cells and organs. in Bioprocess Design and Control, Vol. 48 (ed. Fiechter, A.) 115–168 (Springer, New York, 1993).

    Chapter  Google Scholar 

  50. Sato, K., Nakayama, M. & Shigeta, J. Culturing conditions affecting the production of anthocyanin in suspended cell cultures of strawberry. Plant Sci. 113, 91–98 (1996).

    Article  CAS  Google Scholar 

  51. Sakamoto, K. et al. Effects of nutrients on anthocyanin production in cultured cells of Aralia cordata. Phytochemistry 33, 357–360 (1993).

    Article  CAS  Google Scholar 

  52. LaCount, W., An, G. & Lee, J.M. The effect of polyvinylpyrrolidone (PVP) on the heavy chain monoclonal antibody production from plant suspension cultures. Biotechnol. Lett. 19, 93–96 (1997).

    Article  CAS  Google Scholar 

  53. Lee, J.H., Kim, N.S., Kwon, T.H., Jang, Y.S. & Yang, M.S. Increased production of human granulocyte-macrophage colony stimulating factor (hGM-CSF) by the addition of stabilizing polymer in plant suspension cultures. J. Biotechnol. 96, 205–211 (2002).

    Article  PubMed  CAS  Google Scholar 

  54. Fischer, R. et al. Expression and characterization of bispecific single-chain Fv fragments produced in transgenic plants. Eur. J. Biochem. 262, 810–816 (1999).

    Article  PubMed  CAS  Google Scholar 

  55. Schouten, A. et al. The C-terminal KDEL sequence increases the expression level of a single-chain antibody designed to be targeted to both the cytosol and the secretory pathway. Plant Mol. Biol. 30, 781–793 (1996).

    Article  PubMed  CAS  Google Scholar 

  56. Xu, H. et al. Combined use of regulatory elements within the cDNA to increase the production of a soluble mouse single-chain antibody, scFv, from tobacco cell suspension cultures. Protein Expr. Purif. 24, 384–394 (2002).

    Article  PubMed  CAS  Google Scholar 

  57. Francisco, J.A. et al. Expression and characterization of bryodin 1 and a bryodin 1-based single-chain immunotoxin from tobacco cell culture. Bioconjug. Chem. 8, 708–713 (1997).

    Article  PubMed  CAS  Google Scholar 

  58. Yano, A., Maeda, F. & Takekoshi, M. Transgenic tobacco cells producing the human monoclonal antibody to hepatitis B virus surface antigen. J. Med. Virol. 73, 208–215 (2004).

    Article  PubMed  CAS  Google Scholar 

  59. Wongsamuth, R. & Doran, P.M. Production of monoclonal antibodies from tobacco hairy roots. Biotechnol. Bioeng. 54, 401–415 (1997).

    Article  PubMed  CAS  Google Scholar 

  60. Wahl, M.F., An, G.H. & Lee, J.M. Effects of dimethylsulfoxide on heavy-chain monoclonal antibody production from plant cell culture. Biotechnol. Lett. 17, 463–468 (1995).

    Article  CAS  Google Scholar 

  61. Magnuson, N.S. et al. Enhanced recovery of a secreted mammalian protein from suspension culture of genetically modified tobacco cells. Protein Expr. Purif. 7, 220–228 (1996).

    Article  PubMed  CAS  Google Scholar 

  62. James, E.A. et al. Production and characterization of biologically active human GM-CSF secreted by genetically modified plant cells. Protein Expr. Purif. 19, 131–138 (2000).

    Article  PubMed  CAS  Google Scholar 

  63. Chang, H.N. & Sim, S.J. Extractive plant cell culture. Curr. Opin. Biotechnol. 6 (1995).

  64. Van Gulik, W.M., ten Hoopen, H.J. & Heijnen, J.J. The application of continuous culture for plant cell suspensions. Enzyme Microb. Technol. 28, 796–805 (2001).

    Article  PubMed  CAS  Google Scholar 

  65. Tulecke, W. Continuous cultures of higher plant cells in liquid media: the advantages and potential use of a phytostat. Ann. NY Acad. Sci. 139, 162–175 (1966).

    Article  PubMed  CAS  Google Scholar 

  66. Miller, R.A., Shyluk, J.P., Gamborg, O.L. & Kirkpatrick, J.W. Phytostat for continuous culture and automatic sampling of plant-cell suspensions. Science 159, 540–542 (1968).

    Article  PubMed  CAS  Google Scholar 

  67. Sahai, O.P. & Shuler, M.L. Multistage continuous culture to examine secondary metabolite formation in plant cells: phenolics from Nicotiana tabacum. Biotechnol. Bioeng. 26, 27–36 (1984).

    Article  PubMed  CAS  Google Scholar 

  68. Stoger, E., Sack, M., Nicholson, L., Fischer, R. & Christou, P. Recent progress in plantibody technology. Current Pharmaceutical Design (in the press).

  69. Fahrner, R.L. et al. Industrial purification of pharmaceutical antibodies: development, operation, and validation of chromatography processes. Biotechnol. Genet. Eng. Rev. 18, 301–327 (2001).

    Article  PubMed  CAS  Google Scholar 

  70. FDA. Guidance for industry. Drugs, biologics, and medical devices derived from bioengineered plants for use in humans and animals. (Food and Drug Administration, Rockville, Maryland, 2002).

  71. CPMP. Point to consider on quality aspects of medicinal products containing active substances produced by stable transgene expression in higher plants (CPMP/BWP/764/02). (The European Agency for the Evaluation of Medicinal Products, London, 2002).

  72. Valdes, R. et al. Large-scale purification of an antibody directed against hepatitis B surface antigen from transgenic tobacco plants. Biochem. Biophys. Res. Commun. 308, 94–100 (2003).

    Article  PubMed  CAS  Google Scholar 

  73. Bai, Y. & Glatz, C.E. Capture of a recombinant protein from unclarified canola extract using streamline expanded bed anion exchange. Biotechnol. Bioeng. 81, 855–864 (2003).

    Article  PubMed  CAS  Google Scholar 

  74. Choi, J.W., Cho, G.H., Byun, S.Y. & Kim, D.I. Integrated bioprocessing for plant cell cultures. Adv. Biochem. Eng. Biotechnol. 72, 63–102 (2001).

    PubMed  CAS  Google Scholar 

  75. Bai, Y. & Glatz, C.E. Bioprocess considerations for expanded-bed chromatography of crude canola extract: sample preparation and adsorbent reuse. Biotechnol. Bioeng. 81, 775–782 (2003).

    Article  PubMed  CAS  Google Scholar 

  76. Chargelegue, D., Vine, N.D., van Dolleweerd, C.J., Drake, P.M. & Ma, J.K. A murine monoclonal antibody produced in transgenic plants with plant-specific glycans is not immunogenic in mice. Transgenic Res. 9, 187–194 (2000).

    Article  PubMed  CAS  Google Scholar 

  77. Cabanes-Macheteau, M. et al. N-glycosylation of a mouse IgG expressed in transgenic tobacco plants. Glycobiology 9, 365–372 (1999).

    Article  PubMed  CAS  Google Scholar 

  78. Palacpac, N.Q. et al. Stable expression of human beta1,4-galactosyltransferase in plant cells modifies N-linked glycosylation patterns. Proc. Natl. Acad. Sci. USA 96, 4692–4697 (1999).

    Article  PubMed  CAS  Google Scholar 

  79. Firek, S. et al. Secretion of a functional single-chain Fv protein in transgenic tobacco plants and cell suspension cultures. Plant Mol. Biol. 23, 861–870 (1993).

    Article  PubMed  CAS  Google Scholar 

  80. Matsumoto, S., Ishii, A., Ikura, K., Ueda, M. & Sasaki, R. Expression of human erythropoietin in cultured tobacco cells. Biosci. Biotechnol. Biochem. 57, 1249–1252 (1993).

    Article  PubMed  CAS  Google Scholar 

  81. Magnuson, N.S. et al. Secretion of biologically active human interleukin-2 and interleukin-4 from genetically modified tobacco cells in suspension culture. Protein Expr. Purif. 13, 45–52 (1998).

    Article  PubMed  CAS  Google Scholar 

  82. Sehnke, P.C. & Ferl, R.J. Processing of preproricin in transgenic tobacco. Protein Expr. Purif. 15, 188–195 (1999).

    Article  PubMed  CAS  Google Scholar 

  83. Ramirez, N. et al. Single-chain antibody fragments specific to the hepatitis B surface antigen, produced in recombinant tobacco cell cultures. Biotechnol. Lett. 22, 1233–1236 (2000).

    Article  CAS  Google Scholar 

  84. Lee, S.Y. & Kim, D.I. Stimulation of murine granulocyte macrophage-colony stimulating factor production by pluronic F-68 and polyethylene glycol in transgenic Nicotiana tabacum cell culture. Biotechnol. Lett. 24, 1779–1783 (2002).

    Article  CAS  Google Scholar 

  85. Hogue, R.S., Lee, J.M. & An, G. Production of a foreign protein product with genetically modified plant cells. Enzyme Microb. Technol. 12, 533–538 (1990).

    Article  PubMed  CAS  Google Scholar 

  86. Bodeutsch, T., James, E.A. & Lee, J.M. The effect of immobilization on recombinant protein production in plant cell culture. Plant Cell Rep. 20, 562–566 (2001).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rainer Fischer.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hellwig, S., Drossard, J., Twyman, R. et al. Plant cell cultures for the production of recombinant proteins. Nat Biotechnol 22, 1415–1422 (2004). https://doi.org/10.1038/nbt1027

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1027

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing