Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Photoswitchable cyan fluorescent protein for protein tracking

Abstract

In recent years diverse photolabeling techniques using green fluorescent protein (GFP)-like proteins have been reported1,2,3,4,5,6,7, including photoactivatable PA-GFP1, photoactivatable protein Kaede2, the DsRed 'greening' technique3 and kindling fluorescent proteins6,7. So far, only PA-GFP, which is monomeric and gives 100-fold fluorescence contrast, could be applied for protein tracking. Here we describe a dual-color monomeric protein, photoswitchable cyan fluorescent protein (PS-CFP). PS-CFP is capable of efficient photoconversion from cyan to green, changing both its excitation and emission spectra in response to 405-nm light irradiation. Complete photoactivation of PS-CFP results in a 1,500-fold increase in the green-to-cyan fluorescence ratio, making it the highest-contrast monomeric photoactivatable fluorescent protein described to date. We used PS-CFP as a photoswitchable tag to study trafficking of human dopamine transporter in living cells. At moderate excitation intensities, PS-CFP can be used as a pH-stable cyan label for protein tagging and fluorescence resonance energy transfer applications.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: PS-CFP photoswitching.
Figure 2: PS-CFP-hDAT tracking within filopodia of HEK293 cells.
Figure 3: PS-CFP-hDAT interchange between two endosomes.

Similar content being viewed by others

Accession codes

Accessions

GenBank/EMBL/DDBJ

References

  1. Patterson, G.H. & Lippincott-Schwartz, J. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 13, 1873–1877 (2002).

    Article  CAS  Google Scholar 

  2. Ando, R., Hama, H., Yamamoto-Hino, M., Mizuno, H. & Miyawaki, A. An optical marker based on the UV-induced green-to-red photoconversion of a fluorescent protein. Proc. Natl. Acad. Sci. USA 99, 12651–12656 (2002).

    Article  CAS  PubMed  Google Scholar 

  3. Marchant, J.S., Stutzmann, G.E., Leissring, M.A., LaFerla, F.M. & Parker, I. Multiphoton-evoked color change of DsRed as an optical highlighter for cellular and subcellular labeling. Nat. Biotechnol. 19, 645–649 (2001).

    Article  CAS  PubMed  Google Scholar 

  4. Yokoe, H. & Meyer, T. Spatial dynamics of GFP-tagged proteins investigated by local fluorescence enhancement. Nat. Biotechnol. 14, 1252–1256 (1996).

    Article  CAS  PubMed  Google Scholar 

  5. Dunn, G.A., Dobbie, I.M., Monypenny, J., Holt, M.R. & Zicha, D. Fluorescence localization after photobleaching (FLAP): a new method for studying protein dynamics in living cells. J. Microsc. 205, 109–112 (2002).

    Article  CAS  PubMed  Google Scholar 

  6. Chudakov, D.M., Feofanov, A.V., Mudrik, N.N., Lukyanov, S. & Lukyanov, K.A. Chromophore environment provides clue to “kindling fluorescent protein” riddle. J. Biol. Chem. 278, 7215–7219 (2003).

    Article  CAS  PubMed  Google Scholar 

  7. Chudakov, D.M. et al. Kindling fluorescent proteins for precise in vivo photolabeling. Nat. Biotechnol. 21, 191–194 (2003).

    Article  CAS  PubMed  Google Scholar 

  8. Gurskaya, N.G. et al. A colourless GFP homologue from the non-fluorescent hydromedusa Aequorea coerulescens and its fluorescent mutants. Biochem J. 373, 403–408 (2003).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tsien, R.Y. The green fluorescent protein. Annu. Rev. Biochem. 67, 509–544 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Chattoraj, M., King, B.A., Bublitz, G.U. & Boxer, S.G. Ultra-fast excited state dynamics in green fluorescent protein: multiple states and proton transfer. Proc. Natl. Acad. Sci. USA 93, 8362–8367 (1996).

    Article  CAS  PubMed  Google Scholar 

  11. Creemers, T.M., Lock, A.J., Subramaniam, V., Jovin, T.M. & Volker, S. Three photoconvertible forms of green fluorescent protein identified by spectral hole-burning. Nat. Struct. Biol. 6, 557–560 (1999).

    Article  CAS  PubMed  Google Scholar 

  12. Lill, M.A. & Helms, V. Proton shuttle in green fluorescent protein studied by dynamic simulations. Proc. Natl. Acad. Sci. USA 99, 2778–2781 (2002).

    Article  CAS  PubMed  Google Scholar 

  13. Hanson, G.T. et al. Green fluorescent protein variants as ratiometric dual emission pH sensors. 1. Structural characterization and preliminary application. Biochemistry 41, 15477–15488 (2002).

    Article  CAS  PubMed  Google Scholar 

  14. McAnaney, T.B., Park, E.S., Hanson, G.T., Remington, S.J. & Boxer, S.G. Green fluorescent protein variants as ratiometric dual emission pH sensors. 2. Excited-state dynamics. Biochemistry 41, 15489–15494 (2002).

    Article  CAS  PubMed  Google Scholar 

  15. Brejc, K. et al. Structural basis for dual excitation and photoisomerization of the Aequorea victoria green fluorescent protein. Proc. Natl. Acad. Sci. USA 94, 2306–2311 (1997).

    Article  CAS  PubMed  Google Scholar 

  16. Van Thor, J.J., Gensch, T., Hellingwerf, K.J. & Johnson, L.N. Phototransformation of green fluorescent protein with UV and visible light leads to decarboxylation of glutamate 222. Nat. Struct. Biol. 9, 37–41 (2002).

    Article  CAS  PubMed  Google Scholar 

  17. Ehrig, T., O'Kane, D.J. & Prendergast, F.G. Green-fluorescent protein mutants with altered fluorescence excitation spectra. FEBS Lett. 367, 163–166 (1995).

    Article  CAS  PubMed  Google Scholar 

  18. Patterson, G., Day, R.N. & Piston, D. Fluorescent protein spectra. J. Cell Sci. 114, 837–838 (2001).

    PubMed  CAS  Google Scholar 

  19. Daniels, G.M. & Amara, S.G. Regulated trafficking of the human dopamine transporter. Clathrin-mediated internalization and lysosomal degradation in response to phorbol esters. J. Biol. Chem. 274, 35794–35801 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Carvelli, L. et al. PI 3-kinase regulation of dopamine uptake. J. Neurochem. 81, 859–869 (2002).

    Article  CAS  PubMed  Google Scholar 

  21. Sorkina, T., Doolen, S., Galperin, E., Zahniser, N.R. & Sorkin, A. Oligomerization of dopamine transporters visualized in living cells by fluorescence resonance energy transfer microscopy. J. Biol. Chem. 278, 28274–28283 (2003).

    Article  CAS  PubMed  Google Scholar 

  22. Saunders, C. et al. Amphetamine-induced loss of human dopamine transporter activity: an internalization-dependent and cocaine-sensitive mechanism. Proc. Natl. Acad. Sci. USA 97, 6850–6855 (2000).

    Article  CAS  PubMed  Google Scholar 

  23. Sorkin, A. & Von Zastrow, M. Signal transduction and endocytosis: close encounters of many kinds. Nat. Rev. Mol. Cell Biol. 3, 600–614 (2002).

    Article  CAS  PubMed  Google Scholar 

  24. Ho, S.N., Hunt, H.D., Horton, R.M., Pullen, J.K. & Pease, L.R. Site-directed mutagenesis by overlap extension using the polymerase chain reaction. Gene 77, 51–59 (1989).

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

We are grateful to Alexander Sorkin for cDNA of hDAT and valuable discussions. We thank Natalia E. Yelina for the critical reading of the manuscript. This work was supported by grants from National Institutes of Health/National Institute on Drug Abuse A DA014204 and National Institutes of Health/National Institute of General Medical Sciences GM070358 (to V.V.V.), Russian Academy of Sciences for the program “Molecular and Cell Biology” and EC FP-6 Integrated Project LSHG-CT-2003-503259.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantin A Lukyanov.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

PS-CFP Ph stability before and after photoswitching compared to EGFP. (PDF 311 kb)

Supplementary Fig. 2

Photostability of the photactivated PS-CFP compared to EGFP. (PDF 322 kb)

Supplementary Fig. 3

Protein gel electrophoresis analysis of PS-CFP. (PDF 181 kb)

Supplementary Fig. 4

PS-CFP-actin fusion. (PDF 115 kb)

Supplementary Fig. 5

PS-CFP photoswtiching in the cell fusion. (PDF 171 kb)

Supplementary Table 1

Photoactivatable GFP-like protein properties (PDF 7 kb)

Supplementary Video 1

SP-CFP-hDAT fusion movement tracking within filopodia I (MOV 817 kb)

Supplementary Video 2

SP-CFP-hDAT fusion movement tracking within filopodia II (MOV 1020 kb)

Supplementary Video 3

SP-CFP-hDAT fusion movement tracking within early endosomes (MOV 723 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chudakov, D., Verkhusha, V., Staroverov, D. et al. Photoswitchable cyan fluorescent protein for protein tracking. Nat Biotechnol 22, 1435–1439 (2004). https://doi.org/10.1038/nbt1025

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1025

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing