Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Historical Perspective
  • Published:

The evolution of molecular biology into systems biology

Abstract

Systems analysis has historically been performed in many areas of biology, including ecology, developmental biology and immunology. More recently, the genomics revolution has catapulted molecular biology into the realm of systems biology. In unicellular organisms and well-defined cell lines of higher organisms, systems approaches are making definitive strides toward scientific understanding and biotechnological applications. We argue here that two distinct lines of inquiry in molecular biology have converged to form contemporary systems biology.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Two lines of inquiry led from the approximate onset of molecular biological thinking to present-day systems biology.

Erin Boyle

Similar content being viewed by others

References

  1. Umbarger, H.E. & Brown, B. Threonine deamination in Escherichia coli. II. Evidence for two L-threonine deaminases. J. Bacteriol. 73, 105–12 (1957).

    Article  CAS  Google Scholar 

  2. Yates, R.A. & Pardee, A.B. Control by uracil of formation of enzymes required for orotate synthesis. J. Biol. Chem. 227, 677–692 (1957).

    CAS  PubMed  Google Scholar 

  3. Beckwith, J.R. Regulation of the lac operon. Recent studies on the regulation of lactose metabolism in Escherichia coli support the operon model. Science 156, 597–604 (1967).

    Article  CAS  Google Scholar 

  4. Hunkapiller, T. et al. Large-scale and automated DNA sequence determination. Science 254, 59–67 (1991).

    Article  CAS  Google Scholar 

  5. Rowen, L., Magharias, G. & Hood, L. Sequencing the human genome. Science 278, 605–607 (1997).

    Article  CAS  Google Scholar 

  6. Scherf, M., Klingenhoff, A. & Werner, T. Highly specific localization of promoter regions in large genomic sequences by PromoterInspector: a novel context analysis approach. J. Mol. Biol. 297, 599–606 (2000).

    Article  CAS  Google Scholar 

  7. Uetz, P. et al. A comprehensive analysis of protein–protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  8. Ge, H., Walhout, A.J. & Vidal, M. Integrating 'omic' information: a bridge between genomics and systems biology. Trends Genet. 19, 551–560 (2003).

    Article  CAS  Google Scholar 

  9. Palsson, B.O. In silico biology through 'omics'. Nat. Biotechnol. 20, 649–650 (2002).

    Article  CAS  Google Scholar 

  10. Schrödinger, E. What is life? The physical aspects of the living cell. Based on Lectures Delivered under the Auspices of the Dublin Institute for Advanced Studies at Trinity College, Dublin, in February 1943. (Cambridge University Press, Cambridge, UK, 1944). http://home.att.net/p.caimi/oremia.html

    Google Scholar 

  11. Onsager, L. Reciprocal relations in irreversible processes. Phys. Rev. 37, 405–426 (1931).

    Article  CAS  Google Scholar 

  12. Rottenberg, H., Caplan, S.R. & Essig, A. Stoichiometry and coupling: theories of oxidative phosphorylation. Nature 216, 610–611 (1967).

    Article  CAS  Google Scholar 

  13. Westerhoff, H.V. & Van Dam, K. Thermodynamics and Control of Biological Free-Energy Transduction (Elsevier, Amsterdam, 1987).

    Google Scholar 

  14. Mitchell, P. Chemiosmotic Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic type of mechanism. Nature 191, 144–148 (1961).

    Article  CAS  Google Scholar 

  15. Mitchell, P. Coupling in Oxidative and Photosynthetic Phosphorylation. (Glynn Research Ltd., Bodmin, UK, 1966).

    Google Scholar 

  16. Turing, A. The chemical basis of morphogenesis. Phil. Trans. Roy. Soc. London, Ser. B 237, 37–72 (1952).

    Google Scholar 

  17. Glansdorff, P. & Prigogine, I. Structure, Stabilité et Fluctuations (Masson, Paris, 1971).

    Google Scholar 

  18. Lawrence, P.A. The Making of a Fly (Blackwell, London, 1992).

    Google Scholar 

  19. Chance, B., Estabrook, R.W. & Ghosh, A. Damped sinusoidal oscillations of cytoplasmic reduced pyridine nucleotide in yeast cells. Proc. Natl. Acad. Sci. USA 51, 1244–1251 (1964).

    Article  CAS  Google Scholar 

  20. Hess, B. & Boiteux, A. Oscillatory phenomena in biochemistry. Annu. Rev. Biochem. 40, 237–258 (1971).

    Article  CAS  Google Scholar 

  21. Teusink, B., Bakker, B.M. & Westerhoff, H.V. Control of frequency and amplitudes is shared by all enzymes in three models for yeast glycolytic oscillations. Biochim. Biophys. Acta. 1275, 204–212 (1996).

    Article  Google Scholar 

  22. Wolf, J. et al. Transduction of intracellular and intercellular dynamics in yeast glycolytic oscillations. Biophys. J. 78, 1145–1153 (2000).

    Article  CAS  Google Scholar 

  23. Tyson, J.J. & Murray, J.D. Cyclic AMP waves during aggregation of Dictyostelium amoebae. Development 106, 421–426 (1989).

    CAS  PubMed  Google Scholar 

  24. Goodwin, B.C. Oscillatory Organization in Cells, a Dynamic Theory of Cellular Control Processes (Academic Press, New York, 1963).

    Google Scholar 

  25. Garfinkel, D. et al. Computer applications to biochemical kinetics. Annu. Rev. Biochem. 39, 473–498 (1970).

    Article  CAS  Google Scholar 

  26. Loomis, W. & Thomas, S. Kinetic analysis of biochemical differentiation in Dictyostelium discoideum. J. Biol. Chem. 251, 6252–6258 (1976).

    CAS  PubMed  Google Scholar 

  27. Wright, B.E. The use of kinetic models to analyze differentiation. Behavioral Sci. 15, 37–45 (1970).

    Article  CAS  Google Scholar 

  28. Heinrich, R., Rapoport, S.M. & Rapoport, T.A. Progr. Biophys. Mol. Biol. 32, 1–83 (1977).

    Article  CAS  Google Scholar 

  29. Joshi, A. & Palsson, B.O. Metabolic dynamics in the human red cell. Part I—A comprehensive kinetic model. J. Theor. Biol. 141, 515–528 (1989).

    Article  CAS  Google Scholar 

  30. Novak, B. & Tyson, J.J. Quantitative analysis of a molecular model of mitotic control in fission yeast. J. Theor. Biol. 173, 283–305 (1995).

    Article  CAS  Google Scholar 

  31. Edwards, J.S. & Palsson, B.O. Systems properties of the Haemophilus influenzae Rd metabolic genotype. J. Biol. Chem. 274, 17410–17416 (1999).

    Article  CAS  Google Scholar 

  32. Kacser, H. & Burns, J.A. In Rate Control of Biological Processes (ed., Davies, D.D.) 65–104 (Cambridge University Press, Cambridge, 1973).

    Google Scholar 

  33. Groen, A.K., Wanders, R.J.A., Van Roermund, C., Westerhoff, H.V. & Tager, J.M. Quantification of the contribution of various steps to the control of mitochondrial respiration. J. Biol. Chem. 257, 2754–2757 (1982).

    CAS  PubMed  Google Scholar 

  34. Savageau, M.A. Biochemical Systems Analysis (Addison-Wesley, Reading, MA, 1976).

    Google Scholar 

  35. Westerhoff, H.V. & Chen, Y. How do enzyme activities control metabolite concentrations? An additional theorem in the theory of metabolic control. Eur. J. Biochem. 142, 425–430 (1984).

    Article  CAS  Google Scholar 

  36. Westerhoff, H.V., Hofmeyr, J.H. & Kholodenko, B.N. Getting to the inside of cells using metabolic control analysis. Biophys. Chem. 50, 273–283 (1994).

    Article  CAS  Google Scholar 

  37. Papin, J.A., Price, N.D., Wiback, S.J., Fell, D.A. & Palsson, B.O. Metabolic pathways in the post-genome era. Trends Biochem. Sci. 28, 250–258 (2003).

    Article  CAS  Google Scholar 

  38. Kholodenko, B.N. & Westerhoff, H.V. (eds.) Metabolic Engineering in the Post Genomics Era (Horizon Bioscience, UK, 2004).

    Google Scholar 

  39. Bakker, B.M. et al. Network-based selectivity of antiparasitic inhibitors. Mol. Biol. Rep. 29, 1–5 (2002).

    Article  CAS  Google Scholar 

  40. Ibarra, R.U., Edwards, J.S. & Palsson, B.O. Escherichia coli K-12 undergoes adaptive evolution to achieve in silico predicted optimal growth. Nature 420, 186–189 (2002).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank Adam Arkin for comments and Timothy Allen for editing. B.O.P. serves on the scientific advisory board of Genomatica, Inc.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hans V Westerhoff or Bernhard O Palsson.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Westerhoff, H., Palsson, B. The evolution of molecular biology into systems biology. Nat Biotechnol 22, 1249–1252 (2004). https://doi.org/10.1038/nbt1020

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1020

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing