Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Analysis
  • Published:

Ten thousand interactions for the molecular biologist

Abstract

Previous studies have suggested that nature is restricted to about 1,000 protein folds to perform a great diversity of functions. Here, we use protein interaction data from different sources and three-dimensional structures to suggest that the total number of interaction types is also limited, and estimate that most interactions in nature will conform to one of about 10,000 types. We currently know fewer than 2,000, and at the present rate of structure determination, it will be more than 20 years before we know a full representative set.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Direct physical interactions within complexes.
Figure 2
Figure 3: Growth in the number and type of protein-protein interactions of known three-dimensional structure.

Similar content being viewed by others

References

  1. Chothia, C. One thousand families for the molecular biologist. Nature 357, 543–544 (1992).

    Article  CAS  Google Scholar 

  2. Andreeva, A. et al. SCOP database in 2004: refinements integrate structure and sequence family data. Nucleic Acids Res. 32 Database issue, D226–D229 (2004).

    Article  CAS  Google Scholar 

  3. Pearl, F.M. et al. The CATH database: an extended protein family resource for structural and functional genomics. Nucleic Acids Res. 31, 452–455 (2003).

    Article  CAS  Google Scholar 

  4. Kuhlman, B. et al. Design of a novel globular protein fold with atomic-level accuracy. Science 302, 1364–1368 (2003).

    Article  CAS  Google Scholar 

  5. Uetz, P. et al. A comprehensive analysis of protein-protein interactions in Saccharomyces cerevisiae. Nature 403, 623–627 (2000).

    Article  CAS  Google Scholar 

  6. Ito, T. et al. A comprehensive two-hybrid analysis to explore the yeast protein interactome. Proc. Natl. Acad. Sci. USA 98, 4569–4574 (2001).

    Article  CAS  Google Scholar 

  7. Gavin, A.C. et al. Functional organization of the yeast proteome by systematic analysis of protein complexes. Nature 415, 141–147 (2002).

    Article  CAS  Google Scholar 

  8. Ho, Y. et al. Systematic identification of protein complexes in Saccharomyces cerevisiae by mass spectrometry. Nature 415, 180–183 (2002).

    Article  CAS  Google Scholar 

  9. Rain, J.C. et al. The protein-protein interaction map of Helicobacter pylori. Nature 409, 211–215 (2001).

    Article  CAS  Google Scholar 

  10. Giot, L. et al. A protein interaction map of Drosophila melanogaster. Science 302, 1727–1736 (2003).

    Article  CAS  Google Scholar 

  11. Li, S. et al. A map of the interactome network of the metazoan C. elegans. Science 303, 540–543 (2004).

    Article  CAS  Google Scholar 

  12. Sali, A., Glaeser, R., Earnest, T. & Baumeister, W. From words to literature in structural proteomics. Nature 422, 216–225 (2003).

    Article  CAS  Google Scholar 

  13. Aloy, P. et al. Structure-based assembly of protein complexes in yeast. Science 303, 2026–2029 (2004).

    Article  CAS  Google Scholar 

  14. Russell, R.B. et al. A structural perspective on protein-protein interactions and complexes. Curr. Opin. Struct. Biol. 14, 313–324 (2004).

    Article  CAS  Google Scholar 

  15. Apic, G., Gough, J. & Teichmann, S.A. Domain combinations in archaeal, eubacterial and eukaryotic proteomes. J. Mol. Biol. 310, 311–325 (2001).

    Article  CAS  Google Scholar 

  16. Abbott, A. Proteomics: the society of proteins. Nature 417, 894–896 (2002).

    Article  CAS  Google Scholar 

  17. Aloy, P. & Russell, R.B. The third dimension for protein interactions and complexes. Trends Biochem. Sci. 27, 633–638 (2002).

    Article  CAS  Google Scholar 

  18. Bader, G.D. & Hogue, C.W. Analyzing yeast protein-protein interaction data obtained from different sources. Nat. Biotechnol. 20, 991–997 (2002).

    Article  CAS  Google Scholar 

  19. Westbrook, J., Feng, Z., Chen, L., Yang, H. & Berman, H.M. The Protein Data Bank and structural genomics. Nucleic Acids Res. 31, 489–491 (2003).

    Article  CAS  Google Scholar 

  20. Aloy, P. & Russell, R.B. Interrogating protein interaction networks through structural biology. Proc. Natl. Acad. Sci. USA 99, 5896–5901 (2002).

    Article  CAS  Google Scholar 

  21. Henrick, K. & Thornton, J.M. PQS: a protein quaternary structure file server. Trends Biochem. Sci. 23, 358–361 (1998).

    Article  CAS  Google Scholar 

  22. Aloy, P., Ceulemans, H., Stark, A. & Russell, R.B. The relationship between sequence and interaction divergence in proteins. J. Mol. Biol. 332, 989–998 (2003).

    Article  CAS  Google Scholar 

  23. http://3did.embl.de

  24. Von Mering, C. et al. Comparative assessment of large-scale data sets of protein-protein interactions. Nature 417, 399–403 (2002).

    Article  CAS  Google Scholar 

  25. Mewes, H.W. et al. MIPS: a database for genomes and protein sequences. Nucleic Acids Res. 30, 31–34 (2002).

    Article  CAS  Google Scholar 

  26. Bateman, A. et al. The Pfam protein families database. Nucleic Acids Res. 30, 276–280 (2002).

    Article  CAS  Google Scholar 

  27. Tatusov, R.L. et al. The COG database: an updated version includes eukaryotes. BMC Bioinform. 4, 41 (2003).

    Article  Google Scholar 

  28. von Mering, C. et al. STRING: a database of predicted functional associations between proteins. Nucleic Acids Res. 31, 258–261 (2003).

    Article  CAS  Google Scholar 

  29. Kraulis, P.J. MOLSCRIPT: A program to produce both detailed and schematic plots of protein structures. J. Appl. Cryst. 24, 946–950 (1991).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Andrej Sali (UCSF) for fruitful discussions and Peer Bork (EMBL) for useful comments on the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Robert B Russell.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Cite this article

Aloy, P., Russell, R. Ten thousand interactions for the molecular biologist. Nat Biotechnol 22, 1317–1321 (2004). https://doi.org/10.1038/nbt1018

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1018

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing