Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination

Abstract

A recently developed method makes it possible to genetically encode unnatural amino acids with diverse physical, chemical or biological properties in Escherichia coli1 and yeast2. We now show that this technology can be used to efficiently and site-specifically incorporate p-iodo-L-phenylalanine (iodoPhe) into proteins in response to an amber TAG codon. The selective introduction of the anomalously scattering iodine atom into proteins should facilitate single-wavelength anomalous dispersion3,4 experiments on in-house X-ray sources. To illustrate this, we generated a Phe153 → iodoPhe mutant of bacteriophage T4 lysozyme and determined its crystal structure using considerably less data than are needed for the equivalent experiment with cysteine and methionine. The iodoPhe residue, although present in the hydrophobic core of the protein, did not perturb the protein structure in any meaningful way. The ability to selectively introduce this and other heavy atom–containing amino acids into proteins should facilitate the structural study of proteins.

This is a preview of subscription content, access via your institution

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

Figure 1: Evolution of a mutant M. jannaschii TyrRS that specifically incorporates iodoPhe into proteins in response to an amber stop codon in E. coli.
Figure 2: Patterson maps and difference Fourier maps for the anomalous data sets.
Figure 3: Structures and representative electron density of the iodoPhe.

Accession codes

Accessions

Protein Data Bank

References

  1. Wang, L., Brock, A., Herberich, B. & Schultz, P.G. Expanding the genetic code of Escherichia coli. Science 292, 498–500 (2001).

    CAS  Article  Google Scholar 

  2. Chin, J.W. et al. An expanded eukaryotic genetic code. Science 301, 964–967 (2003).

    CAS  Article  Google Scholar 

  3. Hendrickson, W. & Teeter, M. Structure of the hydrophobic protein crambin determined directly from the anomalous scattering of sulfur. Nature 290, 107–113 (1981).

    CAS  Article  Google Scholar 

  4. Debreczeni, J.E., Bunkoczi, G., Ma, Q., Blaser, H. & Sheldrick, G.M. In-house measurement of the sulfur anomalous signal and its use for phasing. Acta Crystallogr. D Biol. Crystallogr. 59, 688–696 (2003).

    Article  Google Scholar 

  5. Dauter, Z., Dauter, M. & Dodson, E. Jolly SAD. Acta Crystallogr. D Biol. Crystallogr. 58, 494–506 (2002).

    Article  Google Scholar 

  6. Dauter, Z., Dauter, M., de La Fortelle, E., Bricogne, G. & Sheldrick, G.M. Can anomalous signal of sulfur become a tool for solving protein crystal structures? J. Mol. Biol. 289, 83–92 (1999).

    CAS  Article  Google Scholar 

  7. Dauter, Z., Dauter, M. & Rajashankar, K.R. Novel approach to phasing proteins: derivatization by short cryo-soaking with halides. Acta Crystallogr. D Biol. Crystallogr. 56, 232–237 (2000).

    CAS  Article  Google Scholar 

  8. Nagem, R.A., Dauter, Z. & Polikarpov, I. Protein crystal structure solution by fast incorporation of negatively and positively charged anomalous scatterers. Acta Crystallogr. D Biol. Crystallogr. 57, 996–1002 (2001).

    CAS  Article  Google Scholar 

  9. Boles, J.O. et al. Bio-incorporation of telluromethionine into buried residues of dihydrofolate reductase. Nat. Struct. Biol. 1, 283–284 (1994).

    CAS  Article  Google Scholar 

  10. Budisa, N. et al. Bioincorporation of telluromethionine into proteins: a promising new approach for X-ray structure analysis of proteins. J. Mol. Biol. 270, 616–623 (1997).

    CAS  Article  Google Scholar 

  11. Brick, P., Bhat, T.N. & Blow, D.M. Structure of tyrosyl-tRNA synthetase refined at 2.3 Å resolution. Interaction of the enzyme with the tyrosyl adenylate intermediate. J. Mol. Biol. 208, 83–98 (1989).

    CAS  Article  Google Scholar 

  12. Wang, L., Zhang, Z., Brock, A. & Schultz, P.G. Addition of the keto functional group to the genetic code of Escherichia coli. Proc. Natl. Acad. Sci. USA 100, 56–61 (2003).

    CAS  Article  Google Scholar 

  13. Kirshenbaum, K., Carrico, I.S. & Tirrell, D.A. Biosynthesis of proteins incorporating a versatile set of phenylalanine analogues. Chembiochem 3, 235–237 (2002).

    Article  Google Scholar 

  14. Eriksson, A.E., Baase, W.A. & Matthews, B.W. Similar hydrophobic replacements of Leu99 and Phe153 within the core of T4 lysozyme have different structural and thermodynamic consequences. J. Mol. Biol. 229, 747–769 (1993).

    CAS  Article  Google Scholar 

  15. Nicholson, H., Anderson, D.E., Dao-pin, S. & Matthews, B.W. Analysis of the interaction between charged side chains and the alpha-helix dipole using designed thermostable mutants of phage T4 lysozyme. Biochemistry 30, 9816–9828 (1991).

    CAS  Article  Google Scholar 

  16. Terwilliger, T.C. & Berendzen, J. Automated MAD and MIR structure solution. Acta Crystallogr. D Biol. Crystallogr. 55, 849–861 (1999).

    CAS  Article  Google Scholar 

  17. Terwilliger, T.C. Maximum-likelihood density modification using pattern recognition of structural motifs. Acta Crystallogr. D Biol. Crystallogr. 57, 1755–1762 (2001).

    CAS  Article  Google Scholar 

  18. Weaver, L.H. & Matthews, B.W. Structure of bacteriophage T4 lysozyme refined at 1.7 Å resolution. J. Mol. Biol. 193, 189–199 (1987).

    CAS  Article  Google Scholar 

  19. Sakamoto, K. et al. Site-specific incorporation of an unnatural amino acid into proteins in mammalian cells. Nucleic Acids Res. 30, 4692–4699 (2002).

    CAS  Article  Google Scholar 

  20. Otwinowski, Z. & Minor, W. Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol. 276, 307–326 (1997).

    CAS  Article  Google Scholar 

  21. Collaborative Computational Project. N The CCP4 suite: programs for protein crystallography. Acta Crystallogr. D Biol. Crystallogr. 50, 760–763 (1994).

  22. Schneider, T.R. & Sheldrick, G.M. Substructure solution with SHELXD. Acta Crystallogr. D Biol. Crystallogr. 58, 1772–1779 (2002).

    Article  Google Scholar 

  23. Murshudov, G.N., Vagin, A.A. & Dodson, E.J. Refinement of macromolecular structures by the maximum-likelihood method. Acta Crystallogr. D Biol. Crystallogr. 53, 240–255 (1997).

    CAS  Article  Google Scholar 

  24. van Aalten, D.M. et al. PRODRG, a program for generating molecular topologies and unique molecular descriptors from coordinates of small molecules. J. Comput. Aided Mol. Des. 10, 255–262 (1996).

    CAS  Article  Google Scholar 

  25. Jones, T.A., Zou, J.Y., Cowan, S.W. & Kjeldgaard, M. Improved methods for building protein models in electron density maps and the location of errors in these models. Acta Crystallogr. A 47, 110–119 (1991).

    Article  Google Scholar 

  26. Lamzin, V.S. & Wilson, K.S. Automated refinement of protein models. Acta Crystallogr. D Biol. Crystallogr. 49, 129–147 (1993).

    CAS  Article  Google Scholar 

  27. Kraulis, P.J. MOLSCRIPT: a program to produce both detailed and schematic plots of protein structures. J. Appl. Crystallogr. 24, 946–950 (1991).

    Article  Google Scholar 

  28. Merritt, E.A. & Murphy, M.E.P. Raster3D Version 2.0. A program for photorealistic molecular graphics. Acta Crystallogr. D Biol. Crystallogr. 50, 869–873 (1994).

    CAS  Article  Google Scholar 

  29. Esnouf, R.M. An extensively modified version of MolScript that includes greatly enhanced coloring capabilities. J. Mol. Graph. Model. 15, 132–134 (1997).

    CAS  Article  Google Scholar 

Download references

Acknowledgements

We would like to thank Heidi Erlandsen and Raymond Stevens for technical assistance. J.X. thanks Jeremy Mills, Jun Yin and Yan Zhang for helpful discussions. This work is supported by a grant from the National Institutes of Health (GM62159) and the Skaggs Institute for Chemical Biology. This is manuscript number 16547-CH of the Scripps Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Glen Spraggon or Peter G Schultz.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Xie, J., Wang, L., Wu, N. et al. The site-specific incorporation of p-iodo-L-phenylalanine into proteins for structure determination. Nat Biotechnol 22, 1297–1301 (2004). https://doi.org/10.1038/nbt1013

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1013

Further reading

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing