Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Commentary
  • Published:

Epigenomics reveals a functional genome anatomy and a new approach to common disease

Epigenomics provides the context for understanding the function of genome sequence, analogous to the functional anatomy of the human body provided by Vesalius a half-millennium ago. Much of the seemingly inconclusive genetic data related to common diseases could therefore become meaningful in an epigenomic context.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: The rate of increase of genome-scale publications addressing cancer genetics has become greater than that of publications in the same area focused on selected genes.

References

  1. Vesalius, A. De humani corporis fabrica libri septem (J. Oporini, Basel, Switzerland, 1543).

    Google Scholar 

  2. McKusick, V.A. J. Am. Med. Assoc. 286, 2289–2295 (2001).

    Article  CAS  Google Scholar 

  3. Proudfoot, N.J., Shander, M.H., Manley, J.L., Gefter, M.L. & Maniatis, T. Science 209, 1329–1336 (1980).

    Article  CAS  Google Scholar 

  4. Crossley, M. & Orkin, S.H. Curr. Opin. Genet. Dev. 3, 232–237 (1993).

    Article  CAS  Google Scholar 

  5. Viville, S. & Surani, M.A. Bioessays 17, 835–838 (1995).

    Article  CAS  Google Scholar 

  6. Boggs, B.A. et al. Nat. Genet. 30, 73–76 (2002).

    Article  CAS  Google Scholar 

  7. Bernstein, B.E. et al. Cell 120, 169–181 (2005).

    Article  CAS  Google Scholar 

  8. van Steensel, B. & Dekker, J. Nat. Biotechnol. 28, 1089–1095 (2010).

    Article  CAS  Google Scholar 

  9. Cai, S., Lee, C.C. & Kohwi-Shigematsu, T. Nat. Genet. 38, 1278–1288 (2006).

    Article  CAS  Google Scholar 

  10. Sandhu, K.S. et al. Genes Dev. 23, 2598–2603 (2009).

    Article  CAS  Google Scholar 

  11. Kapranov, P., Willingham, A.T. & Gingeras, T.R. Nat. Rev. Genet. 8, 413–423 (2007).

    Article  CAS  Google Scholar 

  12. Yu, W. et al. Nature 451, 202–206 (2008).

    Article  CAS  Google Scholar 

  13. MacFarlane, L.A., Gu, Y., Casson, A.G. & Murphy, P.R. Mol. Endocrinol. 24, 800–812 (2010).

    Article  CAS  Google Scholar 

  14. Gupta, R.A. et al. Nature 464, 1071–1076 (2010).

    Article  CAS  Google Scholar 

  15. Wen, B., Wu, H., Shinkai, Y., Irizarry, R.A. & Feinberg, A.P. Nat. Genet. 41, 246–250 (2009).

    Article  CAS  Google Scholar 

  16. Hawkins, R.D. et al. Cell Stem Cell 6, 479–491 (2010).

    Article  CAS  Google Scholar 

  17. Peric-Hupkes, D. et al. Mol. Cell 38, 603–613 (2010).

    Article  CAS  Google Scholar 

  18. Smith, S.T. et al. Dev. Biol. 328, 518–528 (2009).

    Article  CAS  Google Scholar 

  19. Schwartz, Y.B. et al. PLoS Genet. 6, e1000805 (2010).

    Article  Google Scholar 

  20. Lieberman-Aiden, E. et al. Science 326, 289–293 (2009).

    Article  CAS  Google Scholar 

  21. Feinberg, A.P. & Vogelstein, B. Nature 301, 89–92 (1983).

    Article  CAS  Google Scholar 

  22. Frigola, J. et al. Nat. Genet. 38, 540–549 (2006).

    Article  CAS  Google Scholar 

  23. Irizarry, R.A. et al. Nat. Genet. 41, 178–186 (2009).

    Article  CAS  Google Scholar 

  24. Fraga, M.F. et al. Nat. Genet. 37, 391–400 (2005).

    Article  CAS  Google Scholar 

  25. Lister, R. et al. Nature 462, 315–322 (2009).

    Article  CAS  Google Scholar 

  26. Doi, A. et al. Nat. Genet. 41, 1350–1353 (2009).

    Article  CAS  Google Scholar 

  27. Saterlee, J., Schubeler, D. & Ng, H. Nat. Biotechnol. 28, 1039–1044 (2010).

    Article  Google Scholar 

  28. Portela, A. & Esteller, M. Nat. Biotechnol. 28, 1057–1068 (2010).

    Article  CAS  Google Scholar 

  29. Manolio, T.A. et al. Nature 461, 747–753 (2009).

    Article  CAS  Google Scholar 

  30. Goldstein, D.B. N. Engl. J. Med. 360, 1696–1698 (2009).

    Article  CAS  Google Scholar 

  31. Wade, N. A decade later, genetic map yields few new cures. New York Times (12 June 2010).

    Google Scholar 

  32. Bjornsson, H.T., Fallin, M.D. & Feinberg, A.P. Trends Genet. 20, 350–358 (2004).

    Article  CAS  Google Scholar 

  33. Petronis, A., Paterson, A.D. & Kennedy, J.L. Schizophr. Bull. 25, 639–655 (1999).

    Article  CAS  Google Scholar 

  34. Jiang, Y.H., Bressler, J. & Beaudet, A.L. Annu. Rev. Genomics Hum. Genet. 5, 479–510 (2004).

    Article  CAS  Google Scholar 

  35. Gondor, A. & Ohlsson, R. Nature 461, 212–217 (2009).

    Article  Google Scholar 

  36. Kerkel, K. et al. Nat. Genet. 40, 904–908 (2008).

    Article  CAS  Google Scholar 

  37. Gibbs, J.R. et al. PLoS Genet. 6, e1000952 (2010).

    Article  Google Scholar 

  38. Feinberg, A.P. & Irizarry, R.A. Proc. Natl. Acad. Sci. USA 107 Suppl 1, 1757–1764 (2010).

    Article  CAS  Google Scholar 

  39. Feinberg, A.P. et al. Sci. Transl. Med. 2, 49ra67 (2010).

    Article  Google Scholar 

  40. Deng, J. et al. Nat. Biotechnol. 27, 353–360 (2009).

    Article  CAS  Google Scholar 

  41. Bernstein, B.E. et al. Nat. Biotechnol. 28, 1045–1048 (2010).

    Article  CAS  Google Scholar 

  42. Barton, N.H., Briggs, D.E.G., Eisen, J.A., Goldstein, D.B. & Patel, N.H. Evolution (Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, USA, 2007).

    Google Scholar 

Download references

Acknowledgements

I thank E. Pujadas, K. Reddy and R. Ohlsson for comments on the manuscript. This work was supported by US National Institutes of Health grant 5R37CA054358.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew P Feinberg.

Ethics declarations

Competing interests

The author declares no competing financial interests.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Feinberg, A. Epigenomics reveals a functional genome anatomy and a new approach to common disease. Nat Biotechnol 28, 1049–1052 (2010). https://doi.org/10.1038/nbt1010-1049

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1010-1049

This article is cited by

Search

Quick links

Nature Briefing: Translational Research

Sign up for the Nature Briefing: Translational Research newsletter — top stories in biotechnology, drug discovery and pharma.

Get what matters in translational research, free to your inbox weekly. Sign up for Nature Briefing: Translational Research