Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Letter
  • Published:

Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics

Abstract

To study the global dynamics of phosphotyrosine-based signaling events in early growth factor stimulation, we developed a mass spectrometric method that converts temporal changes to differences in peptide isotopic abundance. The proteomes of three cell populations were metabolically encoded with different stable isotopic forms of arginine. Each population was stimulated by epidermal growth factor for a different length of time, and tyrosine-phosphorylated proteins and closely associated binders were affinity purified. Arginine-containing peptides occurred in three forms, which were quantified; we then combined two experiments to generate five-point dynamic profiles. We identified 81 signaling proteins, including virtually all known epidermal growth factor receptor substrates, 31 novel effectors and the time course of their activation upon epidermal growth factor stimulation. Global activation profiles provide an informative perspective on cell signaling and will be crucial to modeling signaling networks in a systems biology approach.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Determining the activation profile of the EGFR phosphotyrosine-dependent proteome.
Figure 2: Western blot analysis of selected EGFR effectors.
Figure 3: Activation profiles of different categories of EGFR signaling effectors, derived from mass spectrometric data as shown in Figure 1b and documented in Table 1.

Similar content being viewed by others

References

  1. Pawson, T. & Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science 300, 445–452 (2003).

    Article  CAS  Google Scholar 

  2. Schlessinger, J. Cell signaling by receptor tyrosine kinases. Cell 103, 211–225 (2000).

    Article  CAS  Google Scholar 

  3. Blume-Jensen, P. & Hunter, T. Oncogenic kinase signalling. Nature 411, 355–365 (2001).

    Article  CAS  Google Scholar 

  4. Ficarro, S.B. et al. Phosphoproteome analysis by mass spectrometry and its application to Saccharomyces cerevisiae. Nat. Biotechnol. 20, 301–305 (2002).

    Article  CAS  Google Scholar 

  5. Salomon, A.R. et al. Profiling of tyrosine phosphorylation pathways in human cells using mass spectrometry. Proc. Natl. Acad. Sci. USA 100, 443–448 (2003).

    Article  CAS  Google Scholar 

  6. Gygi, S.P. et al. Quantitative analysis of complex protein mixtures using isotope-coded affinity tags. Nat. Biotechnol. 17, 994–999 (1999).

    Article  CAS  Google Scholar 

  7. Lill, J. Proteomic tools for quantitation by mass spectrometry. Mass Spectrom. Rev. 22, 182–194 (2003).

    Article  CAS  Google Scholar 

  8. Aebersold, R. & Mann, M. Mass spectrometry-based proteomics. Nature 422, 198–207 (2003).

    Article  CAS  Google Scholar 

  9. Ranish, J.A. et al. The study of macromolecular complexes by quantitative proteomics. Nat. Genet. 33, 349–355 (2003).

    Article  CAS  Google Scholar 

  10. Blagoev, B. et al. A proteomics strategy to elucidate functional protein-protein interactions applied to EGF signaling. Nat. Biotechnol. 21, 315–318 (2003).

    Article  CAS  Google Scholar 

  11. Ong, S.E. et al. Stable isotope labeling by amino acids in cell culture, SILAC, as a simple and accurate approach to expression proteomics. Mol. Cell. Proteomics 1, 376–386 (2002).

    Article  CAS  Google Scholar 

  12. Ong, S.E., Kratchmarova, I. & Mann, M. Properties of 13C-substituted arginine in stable isotope labeling by amino acids in cell culture (SILAC). J. Proteome Res. 2, 173–181 (2003).

    Article  CAS  Google Scholar 

  13. Pandey, A. et al. Identification of a novel immunoreceptor tyrosine-based activation motif-containing molecule, STAM2, by mass spectrometry and its involvement in growth factor and cytokine receptor signaling pathways. J. Biol. Chem. 275, 38633–38639 (2000).

    Article  CAS  Google Scholar 

  14. Pandey, A. et al. Analysis of receptor signaling pathways by mass spectrometry: identification of vav-2 as a substrate of the epidermal and platelet- derived growth factor receptors. Proc. Natl. Acad. Sci. USA 97, 179–184 (2000).

    Article  CAS  Google Scholar 

  15. Pandey, A. et al. Cloning of a novel phosphotyrosine binding domain containing molecule, Odin, involved in signaling by receptor tyrosine kinases. Oncogene 21, 8029–8036 (2002).

    Article  CAS  Google Scholar 

  16. Waterman, H. & Yarden, Y. Molecular mechanisms underlying endocytosis and sorting of ErbB receptor tyrosine kinases. FEBS Lett. 490, 142–152 (2001).

    Article  CAS  Google Scholar 

  17. Dikic, I. & Giordano, S. Negative receptor signalling. Curr. Opin. Cell Biol. 15, 128–135 (2003).

    Article  CAS  Google Scholar 

  18. Bache, K.G., Raiborg, C., Mehlum, A. & Stenmark, H. STAM and Hrs are subunits of a multivalent ubiquitin-binding complex on early endosomes. J. Biol. Chem. 278, 12513–12521 (2003).

    Article  CAS  Google Scholar 

  19. Dong, C., Waters, S.B., Holt, K.H. & Pessin, J.E. SOS phosphorylation and disassociation of the Grb2-SOS complex by the ERK and JNK signaling pathways. J. Biol. Chem. 271, 6328–6332 (1996).

    Article  Google Scholar 

  20. De Corte, V. et al. Gelsolin-induced epithelial cell invasion is dependent on Ras-Rac signaling. EMBO J. 21, 6781–6790 (2002).

    Article  CAS  Google Scholar 

  21. Riggins, R.B., Quilliam, L.A. & Bouton, A.H. Synergistic promotion of c-Src activation and cell migration by Cas and AND-34/BCAR3. J. Biol. Chem. 278, 28264–28273 (2003).

    Article  CAS  Google Scholar 

  22. Brinkman, A., van der Flier, S., Kok, E.M. & Dorssers, L.C. BCAR1 a human homologue of the adapter protein p130Cas, and antiestrogen resistance in breast cancer cells. J. Natl. Cancer Inst. 92, 112–120 (2000).

    Article  CAS  Google Scholar 

  23. van Agthoven, T. et al. Identification of BCAR3 by a random search for genes involved in antiestrogen resistance of human breast cancer cells. EMBO J. 17, 2799–2808 (1998).

    Article  CAS  Google Scholar 

  24. Ostareck-Lederer, A. et al. c-Src-mediated phosphorylation of hnRNP K drives translational activation of specifically silenced mRNAs. Mol. Cell. Biol. 22, 4535–4543 (2002).

    Article  CAS  Google Scholar 

  25. Bach, I. The LIM domain: regulation by association. Mech. Dev. 91, 5–17 (2000).

    Article  CAS  Google Scholar 

  26. Wu, R. et al. Specificity of LIM domain interactions with receptor tyrosine kinases. J. Biol. Chem. 271, 15934–15941 (1996).

    Article  CAS  Google Scholar 

  27. Seykora, J.T., Mei, L., Dotto, G.P. & Stein, P.L. 'Srcasm: a novel Src activating and signaling molecule. J. Biol. Chem. 277, 2812–2822 (2002).

    Article  CAS  Google Scholar 

  28. Lohi, O., Poussu, A., Mao, Y., Quiocho, F. & Lehto, V.P. VHS domain–a longshoreman of vesicle lines. FEBS Lett. 513, 19–23 (2002).

    Article  CAS  Google Scholar 

  29. Trompouki, E. et al. CYLD is a deubiquitinating enzyme that negatively regulates NF-kappaB activation by TNFR family members. Nature 424, 793–796 (2003).

    Article  CAS  Google Scholar 

  30. Kovalenko, A. et al. The tumour suppressor CYLD negatively regulates NF-kappaB signalling by deubiquitination. Nature 424, 801–805 (2003).

    Article  CAS  Google Scholar 

  31. Brummelkamp, T.R., Nijman, S.M., Dirac, A.M. & Bernards, R. Loss of the cylindromatosis tumour suppressor inhibits apoptosis by activating NF-kappaB. Nature 424, 797–801 (2003).

    Article  CAS  Google Scholar 

  32. Wiley, H.S., Shvartsman, S.Y. & Lauffenburger, D.A. Computational modeling of the EGF-receptor system: a paradigm for systems biology. Trends Cell Biol. 13, 43–50 (2003).

    Article  CAS  Google Scholar 

  33. Shevchenko, A., Wilm, M., Vorm, O. & Mann, M. Mass spectrometric sequencing of proteins from silver stained polyacrylamide gels. Anal. Chem. 68, 850–858 (1996).

    Article  CAS  Google Scholar 

  34. Rappsilber, J., Ishihama, Y. & Mann, M. Stop and go extraction tips for matrix-assisted laser desorption/ionization, nanoelectrospray, and LC/MS sample pretreatment in proteomics. Anal. Chem. 75, 663–670 (2003).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

We thank other members of our laboratory for help and fruitful discussions. Peter Mortensen is acknowledged for help with the bioinformatic analysis and Carmen de Hoog and Leonard Foster for critical reading of the manuscript. Work in the Center for Experimental BioInformatics (CEBI) is supported by a generous grant by the Danish National Research foundation and by the 6th Framework Program of the European Union (Interaction Proteome).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matthias Mann.

Ethics declarations

Competing interests

The authors declare no competing financial interests.

Supplementary information

Supplementary Fig. 1

Variability of kinetic data. (PDF 44 kb)

Supplementary Table 1

Proteins activated upon EGF stimulation. (PDF 111 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Blagoev, B., Ong, SE., Kratchmarova, I. et al. Temporal analysis of phosphotyrosine-dependent signaling networks by quantitative proteomics. Nat Biotechnol 22, 1139–1145 (2004). https://doi.org/10.1038/nbt1005

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt1005

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing