Skip to main content

Thank you for visiting You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Designing a polyvalent inhibitor of anthrax toxin


Screening peptide libraries is a proven strategy for identifying inhibitors of protein–ligand interactions. Compounds identified in these screens often bind to their targets with low affinities. When the target protein is present at a high density on the surface of cells or other biological surfaces, it is sometimes possible to increase the biological activity of a weakly binding ligand by presenting multiple copies of it on the same molecule. We isolated a peptide from a phage display library that binds weakly to the heptameric cell-binding subunit of anthrax toxin and prevents the interaction between cell-binding and enzymatic moieties. A molecule consisting of multiple copies of this nonnatural peptide, covalently linked to a flexible backbone, prevented assembly of the toxin complex in vitro and blocked toxin action in an animal model. This result demonstrates that protein–protein interactions can be inhibited by a synthetic, polymeric, polyvalent inhibitor in vivo.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.


All prices are NET prices.

Figure 1: Assembly of anthrax toxin complexes and their entry into cells.
Figure 2: Selection of bacteriophages binding to PA63 heptamer at or near the EF/LF site.
Figure 3: Inhibition of toxin action in cell culture.


  1. Dixon, T.C., Meselson, M., Guillemin, J. & Hanna, P.C. Anthrax. N. Engl. J. Med. 341, 815–826 (1999).

    Article  CAS  PubMed  Google Scholar 

  2. Leppla, S.H. Anthrax toxins. In Bacterial toxins and virulence factors in diseases. Handbook of natural toxins, Vol. 8. (eds Moss, J., Iglewski, B., Vaughan M. & Tu, A.) 543–572 (Dekker, New York, NY; 1995).

    Google Scholar 

  3. Petosa, C., Collier, R.J., Klimpel, K.R., Leppla, S.H. & Liddington R.C. Crystal structure of the anthrax toxin protective antigen. Nature 385, 833–838 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Duesbery, N.S. et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 280, 734–737 (1998).

    Article  CAS  PubMed  Google Scholar 

  5. Zwick, M.B., Shen, J. & Scott, J.K. Phage-displayed peptide libraries. Curr. Opin. Biotechnol. 9, 427–435 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Arora, N. & Leppla, S.H. Residues 1–254 of anthrax toxin lethal factor are sufficient to cause cellular uptake of fused polypeptides. J. Biol. Chem. 268, 3334–3341 (1993).

    CAS  PubMed  Google Scholar 

  7. Mammen, M., Choi, S.-K. & Whitesides, G.M. Polyvalent interactions in biological systems: implications for design and use of multivalent ligands and inhibitors. Angew. Chem. Int. Edn. Engl. 37, 2754–2794 (1998).

    Article  Google Scholar 

  8. Spaltenstein, A. & Whitesides, G.M. Polyacrylamides bearing pendant-sialoside groups strongly inhibit agglutination of erythrocytes by influenza virus. J. Am. Chem. Soc. 113, 686–687 (1991).

    Article  CAS  Google Scholar 

  9. Rao, J., Lahiri, J., Isaacs, L., Weiss, R.M. & Whitesides, G.M. A trivalent system from vancomycin. d-ala-d-Ala with higher affinity than avidin-biotin. Science 280, 708–711 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Matrosovitch, M.N., Mochalova, L.U., Marinina, V.P., Byramova, N.E. & Bonvin, N.V. Synthetic polymeric sialoside inhibitors of influenza virus receptor-binding activity. FEBS Lett. 272, 209–212 (1990).

    Article  Google Scholar 

  11. Gordon, E.J., Sanders, W.J. & Kiessling, L.L. Synthetic ligands point to cell surface strategies. Nature 392, 30–31 (1998).

    Article  CAS  PubMed  Google Scholar 

  12. Kramer, R.H. & Karpen, J.W. Spanning binding sites on allosteric proteins with polymer-linked ligand dimers. Nature 395, 710–713 (1998).

    Article  CAS  PubMed  Google Scholar 

  13. Kitov, P.I. et al. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands. Nature 403, 669–672 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Milne, J.C., Blanke, S.R., Hanna, P.C. & Collier, R.J. Protective antigen-binding domain of anthrax lethal factor mediates translocation of a heterologous protein fused to its amino- or carboxy-terminus. Mol. Microbiol. 15, 661–666 (1995).

    Article  CAS  PubMed  Google Scholar 

  15. Ezzell, J.W., Ivins, B.E. & Leppla, S.H. Immunoelectrophoretic analysis, toxicity, and kinetics of in vitro production of the protective antigen and lethal factor components of Bacillus anthracis toxin. Infect. Immun. 45, 761–767 (1984).

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Milne, J.C., Furlong, D., Hanna, P.C., Wall, J.S. & Collier, R.J. Anthrax protective antigen forms oligomers during intoxication of mammalian cells. J. Biol. Chem. 269, 20607–20612 (1994).

    CAS  PubMed  Google Scholar 

  17. Koivunen, E. et al. Tumor targeting with a selective gelatinase inhibitor. Nat. Biotechnol. 17, 768–774 (1999).

    Article  CAS  PubMed  Google Scholar 

  18. Wrighton, N.C. et al. Small peptides as potent mimetics of the protein hormone erythropoietin. Science 273, 458–463 (1996).

    Article  CAS  PubMed  Google Scholar 

  19. Miller, C.J., Elliott, J.L. & Collier, R.J. Anthrax protective antigen: prepore-to-pore conversion. Biochemistry 38, 10432–10441 (1999).

    Article  CAS  PubMed  Google Scholar 

  20. Benson, E.L., Huynh, P.D., Finkelstein, A. & Collier, R.J. Identification of residues lining the anthrax protective antigen channel. Biochemistry 37, 3941–3948 (1998).

    Article  CAS  PubMed  Google Scholar 

  21. Zhao, J., Milne, J.C. & Collier, R.J. Effect of anthrax toxin's lethal factor on ion channels formed by the protective antigen. J. Biol. Chem. 270, 18626–18630 (1995).

    Article  CAS  PubMed  Google Scholar 

  22. Mammen, M., Dahmann, G. & Whitesides G.M. Effective inhibitors of hemagglutination by influenza virus synthesized from polymers having active ester groups. Insight into mechanism of inhibition. J. Med. Chem. 38, 4179–4190 (1995).

    Article  CAS  PubMed  Google Scholar 

  23. Pace, C.N., Vajdos, F., Fee, L., Grimsley, G. & Gray, T. How to measure and predict the molar absorption coefficient of a protein. Protein Sci. 4, 2411–2423 (1995).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Wesche, J., Elliott, J.L., Falnes, P.O., Olsnes, S. & Collier, R.J. Characterization of membrane translocation by anthrax protective antigen. Biochemistry 37, 15737–15746 (1998).

    Article  CAS  PubMed  Google Scholar 

Download references


This work was supported by grants to R.J.C., G.M.W., and B.R.S. from the National Institutes of Health (NIH), and to G.M.W. from the Defense Advanced Research Projects Agency (DARPA; Arlington, VA). M.M. received a fellowship from the French Defense Advanced Research Projects Agency (DSP/DGA) and the Philippe Fondation. J.M. was supported in part by a Medical Research Council of Canada postdoctoral fellowship. P.D. is a Fonds pour la Formation de Chercheurs et l'Aide à la Recherche (FCAR; Québec, PQ) research fellow. R.J.C. has financial interest in AVANT Immunotherapeutics, Inc.

Author information

Authors and Affiliations


Corresponding author

Correspondence to R. John Collier.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Mourez, M., Kane, R., Mogridge, J. et al. Designing a polyvalent inhibitor of anthrax toxin. Nat Biotechnol 19, 958–961 (2001).

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI:

This article is cited by


Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing