Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Review Article
  • Published:

Status of genome projects for nonpathogenic bacteria and archaea

Abstract

Since the first microbial genome was sequenced in 1995, 30 others have been completed and an additional 99 are known to be in progress. Although the early emphasis of microbial genomics was on human pathogens for obvious reasons, a significant number of sequencing projects have focused on nonpathogenic organisms, beginning with the release of the complete genome sequence of the archaeon Methanococcus jannaschii in 1996. The past 18 months have seen the completion of the genomes of several unusual organisms, including Thermotoga maritima, whose genome reveals extensive potential lateral transfer with archaea; Deinococcus radiodurans, the most radiation-resistant microorganism known; and Aeropyrum pernix, the first Crenarchaeota to be completely sequenced. Although the functional characterization of genomic data is still in its initial stages, it is likely that microbial genomics will have a significant impact on environmental, food, and industrial biotechnology as well as on genomic medicine.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Unrooted phylogenetic tree based on 16S rRNA sequences for each of the prokaryotic organisms whose complete genome sequence has been published (highlighted in green) and other organisms for which genome sequencing projects are underway2.

Similar content being viewed by others

References

  1. Fleischmann, R.D. et al. Whole-genome random sequencing and assembly of Haemophilus influenzae Rd. Science 269, 496–512 (1995).

    Article  CAS  PubMed  Google Scholar 

  2. TIGR Microbial Database. http://www.tigr.org/tdb/mdb/mdb.html

  3. Fraser, C.M. et al. The minimal gene complement of Mycoplasma genitalium. Science 270, 397–403 (1995).

    Article  CAS  PubMed  Google Scholar 

  4. Nelson, K.E. et al. Evidence for lateral gene transfer between Archaea and bacteria from genome sequence of Thermotoga maritima. Nature 399, 323–329 (1999).

    Article  CAS  PubMed  Google Scholar 

  5. Tekaia, F., Lazcano, A. & Dujon, B. The genomic tree as revealed from whole proteome comparisons. Genome Res. 9, 550–557 (1999).

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Paulsen, I.T., Nguyen, L., Sliwinski, M.K., Rabus, R. & Saier, M.H. Jr. Microbial genome analyses: comparative transport capabilities in eighteen prokaryotes. J. Molec. Biol. 301, 75–101 (2000).

    Article  CAS  PubMed  Google Scholar 

  7. Heidelberg, J.F. et al. DNA sequence of both chromosomes of the cholera pathogen Vibrio cholerae. Nature 406, 477–483 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Frangeul, L. et al. Cloning and assembly strategies in microbial genome projects. Microbiology 145, 2625–2634 (1999).

    Article  CAS  PubMed  Google Scholar 

  9. Gardner, M.J. et al. Chromosome 2 sequence of the human malaria parasite Plasmodium falciparum. Science 282, 1126–1132 (1998).

    Article  CAS  PubMed  Google Scholar 

  10. Delcher, A.L. et al. Improved microbial gene identification with GLIMMER. Nucleic Acids Res. 27, 4636–4641 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Tatusov, R.L., Galperin, M.Y., Natale, D.A., & Koonin E.V. The COG database: a tool for genome-scale analysis of protein functions and evolution. Nucleic Acids Res. 28, 33–36 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Bateman, A. et al. Pfam 3.1: 1313 multiple alignments and profile HMMs match the majority of proteins. Nucleic Acids Res. 27, 260–262 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Comprehensive Microbial Resource. http://www.tigr.org/tigr-scripts/CMR2/CMRHomePage.spl

  14. Schuster, S., Fell, D.A. & Dandekar, T. A general definition of metabolic pathways useful for systematic organization and analysis of complex metabolic pathways. Nat. Biotechnol. 18, 226–332 (2000).

    Article  Google Scholar 

  15. Traini, M. et al. Towards an automated approach for protein identification in proteome projects. Electrophoresis 19, 1941–1949 (1998).

    Article  CAS  PubMed  Google Scholar 

  16. Cordwell, S.J. et al. The microbial proteome database—an automated laboratory catalogue for monitoring protein expression in bacteria. Electrophoresis 20, 3580–3588 (1999).

    Article  CAS  PubMed  Google Scholar 

  17. Hays, L.B., Chen, Y.S. & Hu, J.C. Two-hybrid system for characterization of protein–protein interactions in E. coli. Biotechniques 29, 288–290, 292–294, 296 (2000).

    Article  CAS  PubMed  Google Scholar 

  18. De Wildt, R.M.T., Mundy, C.R., Gorick, B.D. & Tomlinson, I.M. Antibody arrays for high-throughput screening of antibody–antigen interactions. Nat. Biotechnol. 18, 989–994 (2000).

    Article  CAS  PubMed  Google Scholar 

  19. Diehn, M., Eisen, M.B., Botstein, D. & Brown. P.O. Large-scale identification of secreted and membrane-associated gene products using DNA microarrays Nat. Genet. 25, 58–62 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Hutchison, C.A. et al. Global transposon mutagenesis and a minimal Mycoplasma genome. Science 286, 2165–2169 (1999).

    Article  CAS  PubMed  Google Scholar 

  21. Kawarabayasi, Y. et al. Complete genome sequence of an aerobic hyper-thermophilic crenarchaeon, Aeropyrum pernix K1. DNA Res. 6, 83–101, 145–152 (1999).

    Article  CAS  PubMed  Google Scholar 

  22. Deckert, G. et al. The complete genome of the hyperthermophilic bacterium Aquifex aeolicus. Nature 392, 353–358 (1998).

    Article  CAS  PubMed  Google Scholar 

  23. White, O. et al. Complete genome sequence of the radioresistant bacterium, Deinococcus radiodurans R1. Science 286, 1571–1577 (1999).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Venkateswaran, A. et al. Physiologic determinants of radiation resistance in Deinococcus radiodurans. Appl. Environ. Microbiol. 66, 2620–2626 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Lange, C.C., Wackett, L.P., Minton, K.W. & Daly, M.J. Engineering a recombinant Deinococcus radiodurans for organopollutant degradation in radioactive mixed waste environments. Nat. Biotechnol 16, 929–933 (1998).

    Article  CAS  PubMed  Google Scholar 

  26. de Saizieu, A. et al. Microarray-based identification of a novel Streptococcus pneumoniae regulon controlled by an autoinduced peptide. J. Bacteriol. 182, 4696–703 (2000)

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Oh, M.K. & Liao, J.C. Gene expression profiling by DNA microarrays and metabolic fluxes in Escherichia coli. Biotechnol. Prog. 16, 278–286 (2000).

    Article  CAS  PubMed  Google Scholar 

  28. Bammert, G.M., & Fostel, J.M. Genome wide expression patterns in Saccharomyces cerevisiae: comparison of drug treatment and genetic alterations affecting biosynthesis of ergosterol. Antimicrob Agents Chemother. 44, 1255–1265 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Rao, M.B., Tanksale, A.M., Ghatge, M.S., & Deshpande, V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 62, 597–635 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Karp, P.D. et al. The EcoCyc and MetaCyc databases. Nucleic Acids Res. 28, 56–59 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Pearl F. et al. Assigning genomic sequences to CATH. Nucleic Acids Res. 28, 277–282 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Perriere, G., Duret, L. & Gouy, M. HOBACGEN: database system for comparative genomics in bacteria. Genome Res. 10, 379–385 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Tomita, M. et al. E-CELL: software environment for whole-cell simulation. Bioinformatics 15, 72–84 (1999).

    Article  CAS  PubMed  Google Scholar 

  34. Maymo-Gatell, X., Chien, Y., Gossett, J.M. & Zinder, S.H. Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568–1571(1997).

    Article  CAS  PubMed  Google Scholar 

  35. Akopyants, N.S. PCR-based subtractive hybridization and differences in gene content among strains of Helicobacter pylori. Proc. Natl. Acad. Sci. USA 95, 13108–13113 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Russell, N.J. Toward a molecular understanding of cold activity of enzymes from psychrophiles. Extremophiles 4, 83–90 (2000).

    Article  CAS  PubMed  Google Scholar 

  37. Robb, F.T. et al. Archaea, a laboratory manual. (Cold Spring Harbor Press, Cold Spring Harbor, NY; 1995).

    Google Scholar 

  38. Garcia, B. et al. Novel biodegradable aromatic plastics from a bacterial source. Genetic and biochemical studies on a route of the phenylacetyl-coA catabolon. Biol. Chem. 274, 29228–29241 (1999).

    Article  CAS  Google Scholar 

  39. Blackburn, M., Golubeva, E., Bowen, D. & French-Constant, R.H. Insecticidal toxins from the bacterium Photorhabdus luminescens. Appl. Environ. Microbiol. 64, 3036–3041 (1998).

    CAS  PubMed  PubMed Central  Google Scholar 

  40. Bult, C.J. et al. Complete genome sequence of the methanogenic archeon, Methanococcus jannaschii. Science 273, 1058–1073 (1996).

    Article  CAS  PubMed  Google Scholar 

  41. Aravind, L. et al. Evidence for massive gene exchange between archaeal and bacterial hyperthermophiles. Trends Genet. 14, 442–444 (1998).

    Article  CAS  PubMed  Google Scholar 

  42. Read, T.D. et al. Genome sequences of Chlamydia trachomatis MoPn and Chlamydia pneumoniae AR39. Nucleic Acids Res. 28, 1397–1406 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Kawarabayasi, Y. et al. Complete sequence and gene organization of the genome of a hyper-thermophilic archaebacterium, Pyrococcus horikoshii OT3. DNA Res. 5, 55–76 (1998).

    Article  CAS  PubMed  Google Scholar 

  44. Lawrence, J.G. & Ochman, H. Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. USA 95, 9413–9447 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Ribosomal Database Project. http://www.cme.msu.edu/RDP/html/index.html

  46. Felsenstein, J. PHYLIP-Phylogeny Inference Package (Version 3.2). Cladistics 5, 164–166 (1989).

    Google Scholar 

Download references

Acknowledgements

The authors would like to thank Dr. Daniel Bond for many useful discussions in the formulation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen E. Nelson.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nelson, K., Paulsen, I., Heidelberg, J. et al. Status of genome projects for nonpathogenic bacteria and archaea. Nat Biotechnol 18, 1049–1054 (2000). https://doi.org/10.1038/80235

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/80235

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing