Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)–carbonyl complex

Abstract

We have developed a technetium labeling technology based on a new organometallic chemistry, which involves simple mixing of the novel reagent, a 99mTc(I)–carbonyl compound, with a His-tagged recombinant protein. This method obviates the labeling of unpaired engineered cysteines, which frequently create problems in large-scale expression and storage of disulfide-containing proteins. In this study, we labeled antibody single-chain Fv fragments to high specific activities (90 mCi/mg), and the label was very stable to serum and all other challenges tested. The pharmacokinetic characteristics were indistinguishable from iodinated scFv fragments, and thus scFV fragments labeled by the new method will be suitable for biodistribution studies. This novel labeling method should be applicable not only to diagnostic imaging with 99mTc, but also to radioimmunotherapy approaches with 186/188Re, and its use can be easily extended to almost any recombinant protein or synthetic peptide.

This is a preview of subscription content, access via your institution

Access options

Rent or buy this article

Prices vary by article type

from$1.95

to$39.95

Prices may be subject to local taxes which are calculated during checkout

Figure 1
Figure 2: Site-specific incorporation of 99mTc into the scFv fragment of McPC603 with or without a His5-tag.
Figure 3: Elution profile of radiolabeled scFv M12 in mouse blood and mouse urine 1 h after intravenous injection.

Similar content being viewed by others

References

  1. Snider, H. et al. Sentinel node biopsy in the staging of breast cancer. Am. J. Surg . 176, 305–310 ( 1998).

    Article  CAS  Google Scholar 

  2. Tilling, R. et al. Technetium-99-Sestamibi scintimammography for the detection of breast carcinoma. J. Nucl. Med. 39, 849– 856 (1998).

    Google Scholar 

  3. Taillefer, R. et al. Myocardial perfusion imaging with 99m-Tc-methoxy-isobutyl-isonitrile (MIBI): comparison of short and long time intervals between rest and stress injections. Preliminary results. Eur. J. Nucl. Med. 13, 515–522 (1988).

    Article  CAS  Google Scholar 

  4. Abrams, M.J., Davison, A., Jones, A.G., Costello, C.E., & Pang, H. Synthesis and characterization of hexakis (alkyl-isocyanide) and hexakis (aryl-isocyanide) complexes of technetium (I). Inorg. Chem. 22, 2798–2800 ( 1983).

    Article  CAS  Google Scholar 

  5. See protocols for current clinical trials on non-Hodgkins lymphoma with radiolabeled antibodies: http://lymphoma.org/pages/clinlist.html .

  6. Begent, R.H.J. et al. Clinical evidence of efficient tumor targeting based on single-chain Fv antibody selected from a combinatorial library. Nat. Med. 2, 979–984 (1996).

    Article  CAS  Google Scholar 

  7. Plückthun, A. et al. In Antibody engineering: a practical approach. (eds McCafferty, J., Hogenboom, H. & Chiswell, D.) 203–252 (Oxford University Press, Oxford, UK; 1996).

    Google Scholar 

  8. Nedelman, M.A. Rapid infarct imaging with a technetium-99m-labeled antimyosin recombinant single-chain Fv: Evaluation in a canine model of acute myocardial infarction. J. Nucl. Med. 34, 234– 241 (1993).

    CAS  PubMed  Google Scholar 

  9. Liberatore, M. et al. Efficient one-step direct labelling of recombinant antibodies with technetium-99m. Eur. J. Nucl. Med. 22, 1326 –1329 (1995).

    Article  CAS  Google Scholar 

  10. Verhaar, M.J. et al. Technetium-99m radiolabeling using a phage-derived single-chain Fv with a C-terminal cysteine. J. Nucl. Med. 37, 868–872 (1996).

    CAS  PubMed  Google Scholar 

  11. George, A.J.T. et al. Radiometal labeling of recombinant proteins by a genetically engineered minimal chelation site: technetium-99m coordination by single-chain Fv antibody fusion proteins through a C-terminal cysteinyl peptide. Proc. Natl. Acad. Sci. USA 92, 8358–8362 (1995).

    Article  CAS  Google Scholar 

  12. Vallabhajosula, S. et al. Preclinical evaluation of technetium-99m-labeled somatostatin receptor-binding peptides. J. Nucl. Med. 37, 1016–1022 (1996).

    CAS  PubMed  Google Scholar 

  13. Bogdanov, A., Simonova, M. & Weissleder, R. Design of metal-binding green fluorescent protein variants. Biochim. Biophys. Acta 1397, 56– 64 (1998).

    Article  CAS  Google Scholar 

  14. Pietersz, G.A., Patrick, M.R. & Chester, K.A. Preclinical characterization and in vivo imaging studies of an engineered recombinant technetium-99m-labeled metallothionein-containing anti-carcinoembryonic antigen single-chain antibody. J. Nucl. Med. 39, 47–56 ( 1998).

    CAS  PubMed  Google Scholar 

  15. Stalteri, M.A., Bansal, S., Hider, R. & Mather, S.J. Comparison of the stability of technetium-labeled peptides to challenge with cysteine. Bioconjugate Chem. 10, 130–136 (1999).

    Article  CAS  Google Scholar 

  16. Skerra, A., Pfitzinger, I. & Plückthun, A. The functional expression of antibody Fv fragments in Escherichia coli: improved vectors and a general applicable purification technique. Bio/Technology 9, 273– 278 (1991).

    CAS  PubMed  Google Scholar 

  17. Sattelberger, A.P. & Bryan, J.C. In The manganese group (ed. Casey, C.P.) 151–166. (Elsevier Science, New York; 1995).

    Google Scholar 

  18. Spradau, T.W., Edwards, W.B., Anderson, C.J., Welch, M.J. & Katzenellenbogen, J.A. Synthesis and biological evaluation of Tc-99m-cyclopentadienyltricarbonyltechnetium-labeled octreotide. Nucl. Med. Biol. 26, 1– 7 (1999).

    Article  CAS  Google Scholar 

  19. Alberto, R. et al. A novel organometallic aqua complex of technetium for labeling of biomolecules: synthesis of [99mTc(OH2)3(CO) 3]+ from [99mTcO4]- in aqueous solution and its reaction with a bifunctional ligand. J. Am. Chem. Soc. 120, 7987– 7988 (1998).

    Article  CAS  Google Scholar 

  20. Martell, A.E., Smith, R.M. & Motekaitis, R.J. In Critical selected stability constants of metal complexes, NIST Standard Reference Data Base 46, Version 2.0 (NIST, Gaithersburg, MD; 1995).

    Google Scholar 

  21. Adams, G.P. et al. Increased affinity leads to improved selective tumor delivery of single-chain Fv antibodies. Cancer Res. 58, 485–490 (1998).

    CAS  PubMed  Google Scholar 

  22. Schott, M.E. et al. Differential metabolic patterns of iodinated versus radiometal chelated anticarcinoma single-chain Fv molecules. Cancer Res. 55, 5323–5329 (1992).

    Google Scholar 

  23. Behr, T.M., Goldenberg, D.M. & Becker, W. Reducing the renal uptake of radiolabeled antibody fragments and peptides for diagnosis and therapy: present status, future prospects and limitations. Eur. J. Nucl. Med. 25, 201– 212 (1998).

    Article  CAS  Google Scholar 

  24. Fritzberg, A.R. Advances in 99m-Tc-labeling of antibodies. Nucl. Med. 26, 7–12 (1987).

    CAS  Google Scholar 

  25. Alberto, R., Schibli, R., Abram, U., Schubiger, P.A. & Kaden, T.A. Steps towards [(C5Me5)TcO 3]: novel synthesis of [(C5Me5)Tc(CO)3] from [{Tc(μ 3 –OH)(CO)3}4] and oxidation of [(C5Me5)M(CO)3] (M=Tc, Re) with Br. Polyhedron 7, 1079– 1089 (1996).

    Article  Google Scholar 

  26. Knappik, A. & Plückthun, A. Engineered turns of a recombinant antibody improve its in vivo folding. Protein Eng. 8, 81–89 (1995).

    Article  CAS  Google Scholar 

  27. Wörn, A. & Plückthun, A. An intrinsically stable antibody scFv fragment can tolerate the loss of both disulfide bonds and fold correctly. FEBS Lett. 427, 357–361 (1998).

    Article  Google Scholar 

  28. Vaughan, T.J. et al. Human antibodies with sub-nanomolar affinities isolated from a large non-immunized phage display library. Nat. Biotechnol. 14, 309–314 (1996).

    Article  CAS  Google Scholar 

  29. Krebber, A. et al. Reliable cloning of functional antibody variable domains from hybridomas and spleen cell repertoires employing a reengineered phage display system. J. Immunol. Methods 201, 35– 55 (1997).

    Article  CAS  Google Scholar 

  30. Lindner, P. et al. Specific detection of His-tagged proteins with recombinant anti-His tag scFv-phosphatase or scFv-phage fusions. Biotechniques 22, 140–149 ( 1997).

    Article  CAS  Google Scholar 

  31. Chizzonit, R. et al. Il-12 receptor. I. Characterization of the receptor on phytohemagglutinin-activated human lymphoblasts. J. Immunol. 148, 3117 –3124 (1992).

    Google Scholar 

  32. Lindmo, T., Boven, E., Cuttitta, F., Fedorko, J. & Bunn, P.A. Determination of the immunoreactive fraction of radiolabeled monoclonal antibodies by linear extrapolation to binding at infinite antigen excess. J. Immunol. Methods 72, 77– 89 (1984).

    Article  CAS  Google Scholar 

  33. Hynes, N.E., Gerber, H.A., Saurer, S. & Groner, B. Overexpression of the c-erbB-2 protein in human breast tumor cell lines. J. Cell. Biochem. 39, 167–173 ( 1989).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andreas Plückthun.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Waibel, R., Alberto, R., Willuda, J. et al. Stable one-step technetium-99m labeling of His-tagged recombinant proteins with a novel Tc(I)–carbonyl complex. Nat Biotechnol 17, 897–901 (1999). https://doi.org/10.1038/12890

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12890

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing