Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells

Abstract

Lipofection of nondividing cells is inefficient because much of the transfected DNA is retained in endosomes, and that which escapes to the cytoplasm enters the nucleus at low rates. To improve the final rate-limiting step of nuclear import, we conjugated a nonclassical nuclear localization signal (NLS) containing the M9 sequence of heterogeneous nuclear ribonucleoprotein (hnRNP) A1, to a cationic peptide scaffold derived from a scrambled sequence of the SV40 T-antigen consensus NLS (ScT). The ScT was added to improve DNA binding of the M9 sequence. Lipofection of confluent endothelium with plasmid complexed with the M9–ScT conjugate resulted in 83% transfection and a 63-fold increase in marker gene expression. The M9–ScT conjugate localized fluorescent plasmid into the nucleus of permeabilized cells, and addition of the nuclear pore blocker wheat germ agglutinin prevented nuclear import. This method of gene transfer may lead to viral- and lipid-free transfection of nondividing cells.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: (A) Two-step reaction to conjugate a cationic peptide (ScT) to the M9 sequence of hnRNP A1.
Figure 2: Endosomal escape and detection of lipofected plasmid in the cytoplasm.
Figure 3: The effect of M9 sequence of hnRNP on transfection efficiency of confluent BAECs.
Figure 4: Lipofection of confluent BAECs with pCMVβgal in the presence or absence of peptides.
Figure 5: Total expression of β-galactosidase (β-gal) activity after complexation of pCMVβgal with peptides containing the M9 sequence.
Figure 6: Localization of rhodamine–plasmid complexed with M9–ScT in digitonin-permeabilized BAECs.

Similar content being viewed by others

References

  1. Flugelman, M.Y. et al. Low level in vivo gene transfer into the arterial wall through a perforated balloon catheter. Circulation 85, 1110–1117 (1992).

    Article  CAS  Google Scholar 

  2. Nabel, E.G., Plautz, G., Boyce, F.M., Stanley, J.C. & Nabel, G.J. Recombinant gene expression in vivo within endothelial cells of the arterial wall. Science 244, 1342–1344 (1989).

    Article  CAS  Google Scholar 

  3. Subramanian, A. & Diamond, S.L. Enhancement of nonviral gene transfer to the endothelium using lipofection of histone compacted DNA. Tissue Engineering 3, 39– 52 (1997).

    Article  CAS  Google Scholar 

  4. Lemerchand, P., Jones, M., Yamaha, I. & Crystal R.G. In vivo gene transfer and expression in normal uninjured blood vessels using replication deficient recombinant adenovirus vectors. Circ. Res. 72, 1132–1138 (1993).

    Article  Google Scholar 

  5. Steg, P.G. et al. Arterial gene transfer to rabbit endothelial and smooth muscle cells using percutaneous delivery of adenoviral vectors. Circulation 90, 1648–1653 (1994).

    Article  CAS  Google Scholar 

  6. Sung, W.L., Trapnell, B.C., Rade, J.J., Virmani, R. & Dichek, D. In vivo adenoviral vector mediated gene transfer into balloon injured rat cartoid arteries. Circ. Res. 73, 797–807 ( 1993).

    Article  Google Scholar 

  7. Schachtner, S.K. et al. In vivo adenovirus-mediated gene transfer via pulmonary artery of rats. Circ. Res. 76, 701– 709 (1995).

    Article  CAS  Google Scholar 

  8. Bergelson, J.M., Cunningham, J.A. & Droguett, G. Isolation of a common receptor for coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320 –1323 (1997).

    Article  CAS  Google Scholar 

  9. Greber, U.F., Webster, P., Weber, J. & Helenius, A. Role of adenovirus protease in virus entry into cells. EMBO J. 15, 1766–1777 (1996).

    Article  CAS  Google Scholar 

  10. Greber, U.F., Willetts, M., Webster, P. & Helenius, A. Stepwise dismantling of adenovirus 2 during entry into cells. Cell 75, 477–487 ( 1993).

    Article  CAS  Google Scholar 

  11. Seth, P. Adenovirus dependent release of choline from plasma membrane vesicles at an acidic pH is mediated by penton base protein. J. Virol. 68, 1204–1206. (1994).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Seth, P., Fitzgerald, D., Ginsberg, H., Willingham, M. & Pastan, I. Role of low-pH environment in adenovirus enhancement of toxicity of Pseudomonas exotoxin-epidermal growth factor of conjugate. J. Virol. 51, 650– 655 (1994).

    Google Scholar 

  13. Seth, P., Willingham, C. & Pastan, I. Adenovirus dependent release of 51 Cr from KB cells at an acidic pH. J. Biol. Chem. 259, 14350 –14352 (1984).

    CAS  PubMed  Google Scholar 

  14. Wagner, E. et al. Coupling of adenovirus to transferrin-polylysine/DNA complexes greatly enhances receptor mediated gene delivery and expression of transfected genes. Proc. Natl. Acad. Sci. USA 89, 6099– 6106 (1992).

    Article  CAS  Google Scholar 

  15. Tseng, W.C., Haselton, F.R. & Giorgio, T.D. Transfection by cationic liposomes using simultaneous single cell measurements of plasmid delivery and transgene expression. J. Biol. Chem. 272, 25641–25647 (1997).

    Article  CAS  Google Scholar 

  16. Felgner, P.L. et al. Lipofection: a highly efficient lipid mediated DNA-transfection procedure. Proc. Natl. Acad. Sci. USA 84, 7413– 7417 (1987).

    Article  CAS  Google Scholar 

  17. Felgner, P.L. & Ringold, G.M. Cationic liposome-mediated transfection. Nature 337, 387–388 (1987).

    Article  Google Scholar 

  18. Felgner, J.H. et al. Enhanced delivery and mechanism studies with a novel series of cationic lipids. J. Biol. Chem. 269, 2550– 2557 (1994).

    CAS  PubMed  Google Scholar 

  19. Legendre, J. & Szoka,Jr., F.C. Delivery of plasmid DNA into mammalian cells using pH sensitive liposomes: comparison with cationic liposomes. Pharm. Res. 9, 1235– 1243 (1992).

    Article  CAS  Google Scholar 

  20. Edgell, C.S., Curiel, D.T., Hu, P. & Marr, H. Efficient gene transfer to human endothelial cells using DNA-complexed to adenovirus particles. Biotechniques 25, 264–268 (1998).

    Article  CAS  Google Scholar 

  21. Jo, H., Sipos, K., Go, Y., Law, R., Rong, J. & McDonald, J.M. Differential effect of shear stress on extracellular signal-regulated kinase and N-terminal Jun kinase in endothelial cells. J. Biol. Chem. 272 , 1395–1401 (1997).

    Article  CAS  Google Scholar 

  22. Fritz, J.D., Herweijer, H., Zhang, G. & Wolff, J.A. Gene transfer into mammalian cells using histone condensed plasmid DNA. Hum. Gene Ther. 7, 1395–1404 (1996).

    Article  CAS  Google Scholar 

  23. Capecchi, M.R. High efficiency transformation by direct microinjection of DNA into mammalian cells. Cell 22, 479–483 (1980).

    Article  CAS  Google Scholar 

  24. Zabner, J., Fasbender, A.J., Moninger, T., Poellinger, K. & Welsh, M. Cellular and molecular barriers to gene transfer by a cationic lipid. J. Biol. Chem. 270 , 18997–19007 (1995).

    Article  CAS  Google Scholar 

  25. Gorlich, D. & Mattaj, I.W. Nucleocytoplasmic Transport. Science 271, 1513–1518 ( 1996).

    Article  CAS  Google Scholar 

  26. Sebestyen, M.G. et al. DNA vector chemistry: the covalent attachment of signal peptides to plasmid DNA. Nat. Biotechnol. 16, 80– 85 (1998).

    Article  CAS  Google Scholar 

  27. Subramanian, A. & Diamond, S.L. Role of nuclear import sequences on gene transfer by lipofection to the endothelium. Ann. Biomed. Eng. 25, 428 (1997 ).

    Google Scholar 

  28. Zanta, M.A., Valladier, P.B. & Behr, J.P. Gene delivery: a single nuclear localization signal peptide is sufficient to carry DNA to the cell nucleus. Proc. Natl. Acad. Sci. USA 96, 91–96 (1999).

    Article  CAS  Google Scholar 

  29. Siomi, H. & Dreyfuss, G. A nuclear localization domain in the hnRNP A1 protein J. Cell Biol. 129, 551–560 (1995).

    Article  CAS  Google Scholar 

  30. Nakielny, S., Mikkio, S.C., Haruhiko, S., Michael, W.M., Pollard, V. & Dreyfuss, G. Transportin: nuclear import receptor of a novel nuclear protein import pathway. Exp. Cell. Res. 229, 261–266 (1996).

    Article  CAS  Google Scholar 

  31. Pollard, V.W. et al. A novel receptor mediated nuclear import pathway. Cell 86, 985–994 ( 1996).

    Article  CAS  Google Scholar 

  32. Hart, S. et al. Lipid-mediated enhancement of transfection by a nonviral integrin-targetting vector. Hum. Gene Ther. 9, 575– 585 (1998).

    Article  CAS  Google Scholar 

  33. Go, Y.-M. et al. Phosphatidylinositide 3-kinase γ mediates shear stress-dependent activation of JNK in endothelial cells. Am. J. Physiol. 274, H1–H7 (1998).

    Article  Google Scholar 

  34. Hong Z. et al. Enhanced adenoassociated virus vector expression by adenovirus protein-cationic liposome complex. Chin. Med J. 108, 332– 338 (1995).

    Google Scholar 

  35. Gao, X. & Huang, L. Cytoplasmic expression of a reporter gene by co delivery of T7-RNA polymerase and T7 promoter sequence with cationic liposomes. Nucleic Acids Res. 21, 2867– 2872 (1993).

    Article  CAS  Google Scholar 

  36. Adam, S.A., Sterne, M.R. & Gerace, L. Nuclear import using digitonin permeabilized cells. Methods Enzymol. 219, 97– 111 (1992).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

S.L.D. is a recipient of a National Science Foundation National Young Investigator Award and National Institutes of Health Grant no. R21-14014 Award.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Scott L. Diamond.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Subramanian, A., Ranganathan, P. & Diamond, S. Nuclear targeting peptide scaffolds for lipofection of nondividing mammalian cells. Nat Biotechnol 17, 873–877 (1999). https://doi.org/10.1038/12860

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/12860

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing