Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

A genome-based approach for the identification of essential bacterial genes

Abstract

We have used comparative genomics to identify 26 Escherichia coli open reading frames that are both of unknown function (hypothetical open reading frames or y-genes) and conserved in the compact genome of Mycoplasma genitalium. Not surprisingly, these genes are broadly conserved in the bacterial world. We used a markerless knockout strategy to screen for essential E. coli genes. To verify this pheno-type, we constructed conditional mutants in genes for which no null mutants could be obtained. In total we identified six genes that are essential for E. coli (yhbZ, ygjD, ycfB, yfil, yihA, and yjeQ). The respective orthologs of the genes yhbZ, ygjD, ycfB, yjeQ, and yihA are also essential in Bacillus subtilis. This low number of essential genes was unexpected and might be due to a characteristic of the versatile genomes of E. coli and B subtilis that is comparable to the phenomenon of nonorthologous gene displacement. The gene ygjD, encoding a sialoglycoprotease, was eliminated from a minimal genome computationally derived from a comparison of the Haemophilus influenzae and M. genitalium genomes. We show that ygjD and its ortholog ydiE are essential in E. coli and B. subtilis, respectively. Thus, we include this gene in a minimal genome. This study systematically integrates comparative genomics and targeted gene disruptions to identify broadly conserved bacterial genes of unknown function required for survival on complex media.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. http://www.tigr.org.

  2. Blattner, F.R. Plunkett III, G, Bloch, C.A. Perna, N.T., Burland, V., Riley, M. et al. 1997. The complete genome sequence of Escherichia coliK-12. Science 277: 1453–1462.

    Article  CAS  Google Scholar 

  3. Mewes, H.W., Albermann, K., Bähr, M., Frishman, D., Gleissner, A., Hani, J. et al. 1997. Overview of the yeast genome. Nature (Suppl.) 387: 7–65.

    Google Scholar 

  4. Botstein, D., Chervitz, S.A., and Cherry, J.M. 1997. Yeast as a model organism. Science 277: 1259–1260.

    Article  CAS  Google Scholar 

  5. Pohlschroder, M., Prinz, W.A., Hartmann, E., and Beckwith, J. 1997. Protein translocation in the three domains of life: variations on a theme. Cell 91: 563–566.

    Article  CAS  Google Scholar 

  6. Mushegian, A.R., and Koonin, E.V. 1996. A minimal gene set for cellular life derived by comparison of complete bacterial genomes. Proc. Natl. Acad. Sci. USA 93: 10268–10273.

    Article  CAS  Google Scholar 

  7. Basset, D.E., Jr Boguski, M.S., Spencer, F., Reeves, R. Kirn, S.-H., Weaver, T., and Hieter, P. 1997. Genome cross-referencing and XREFdb: Implications for the identification and analysis of genes mutated in human disease. Nat. Genet. 15: 339–344.

    Article  Google Scholar 

  8. Hinton, J.C.D. 1997. The Escherichia coligenome sequence: the end of an era or the start of the FUN? Mol.Microbiol. 26: 417–422.

    Article  CAS  Google Scholar 

  9. http://www.expasy.ch/cgi-bin/lists?ecoli.txt).

  10. Higgins, C.F. 1992. ABC transporters: from microorganisms to man. Ann. Rev. Cell Biol. 8: 67–113.

    Article  CAS  Google Scholar 

  11. Link, A.J., Phillips, D., and Church, G.M. 1997. Methods for generating precise deletions and insertions in the genome of wild-type Escherichia coli:application to open reading frame characterization. J. Bacteriol. 179: 6228–6237.

    Article  CAS  Google Scholar 

  12. Hamilton, C.M., Aldea, M., Washburn, B.K., Babitzke, P., and Kushner, S.R. 1989. New method for generating deletions and gene replacements in Escherichia coli. J. Bacteriol. 171: 4617–4622.

    Article  CAS  Google Scholar 

  13. Trach, K. and Hoch, J.A., 1989. Bacillus subtilis spoOBstage 0 sporulation operon encodes an essential GTP-binding protein. J. Bacteriol. 171: 1362–1371.

    Article  CAS  Google Scholar 

  14. Maddock, J., Bhatt, A., Koch, M., and Skidmore, J. 1997. Identification of an essential Caulobacter crescentusgene encoding a member of the Obg family of GTP-binding proteins. J. Bacteriol. 179: 6426–6431.

    Article  CAS  Google Scholar 

  15. Wach, A., Brachat, A., Pöhlmann, R., and Philippsen, P. 1994. New heterologous modules for classical or PCR-based gene disruptions in Saccharomyces cerevisiae. Yeast 10: 1793–1808.

    Article  CAS  Google Scholar 

  16. Woese, C.R., Maniloff, J., and Zablen, L.B. 1980. Phylogenetic analysis of the mycoplasmas. Proc. Natl. Acad. Sci. USA 77: 494–498.

    Article  CAS  Google Scholar 

  17. Fraser, C.M., Gocayne, J.D., White, O., Adams, M.D., Clayton, R.A., Fleischmann, R.D. et al. 1995. The minimal gene complement of Mycoplasma genitalium. Science 270: 397–403.

    Article  CAS  Google Scholar 

  18. Himmelreich, R., Plagens, H., Hilbert, H., Reiner, B., and Herrmann, R. 1997. Comparative analysis of the genomes of the bacteria Mycoplasma pneumoniaeand Mycoplasma genitalium. Nucleic Acid Res. 25: 701 712.

    Article  CAS  Google Scholar 

  19. Koonin, E.V., Tatusov, R.L., and Rudd, K.E. 1996. Protein sequence comparison at genome scale. Methods Enzymol. 266: 295–322.

    Article  CAS  Google Scholar 

  20. Nesin, M., Lupski, J.R., Svec, P., and Godson, G.N. 1987. Possible new genes as revealed by molecular analysis of a 5 kb Escherichia colichromosomal region 5′ to the rpsU-dnaG-rpoDmacromolecular-synthesis operon. Gene 51: 149–161.

    Article  CAS  Google Scholar 

  21. Abdullah, K.M., Lo, R.Y.C., and Mellors, A., 1991. Cloning, nucleotide sequence and expression of the Pasteurella haemolyticaA1 glycoprotease gene. J. Bacteriol. 173: 5597–5603.

    Article  CAS  Google Scholar 

  22. Trias, J. and Gordon, E.M. 1997. Innovative approaches to novel antibacterial drug discovery. Curr. Opin. Biotechnol. 8: 757–762.

    Article  CAS  Google Scholar 

  23. Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. J. Mol. Biol. 215: 403–410.

    Article  CAS  Google Scholar 

  24. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res. 25: 3389–3402.

    Article  CAS  Google Scholar 

  25. Huang, X. and Miller, M. 1991. A time-efficient, linear-space local similarity algorithm. Adv. Appl. Math. 12: 337–357.

    Article  Google Scholar 

  26. (http://ulrec3.unil.ch/software/PFSCAN_form.html).

  27. Higgins, D.G. and Sharp, P.M. 1989. Fast and sensitive multiple sequence alignments on a microcomputer. CABIOS 5: 151–153.

    CAS  PubMed  Google Scholar 

  28. Guzman, L.-M., Belin, D., Carson, M.J., and Beckwith, J. 1995. Tight regulation, modulation and high-level expression by vectors contining the arabinose PBAD promoter. J. Bacteriol. 177: 4121–4130.

    Article  CAS  Google Scholar 

  29. Harwood, C.R., and Cutting, S.M. (eds.). 1990. Molecular biological methods for Bacillus. John Wiley & Sons, Chichester, UK

  30. Guérout-Fleury, A.-M., Frandsen, N., and Stragier, P. 1996. Plasmids for ectopic integration in Bacillus subtilis. Gene 180: 57–61.

    Article  Google Scholar 

  31. LeDeaux, J.R. and Grossman, A.D. 1995. Isolation and characterization of kinC, agene that encodes a sensor kinase homologous to the sporulation sensor kinas-es KinA and KinB in Bacillus subtilis. J. Bacteriol. 177: 166–175.

    Article  CAS  Google Scholar 

  32. Baudin, A., Ozier-Kalogeropoulos, O., Denouel, A., Lacroute, F., and Cullin, C., 1993. A. simple and efficient method for direct gene deletion in Saccharomyces cerevisiae. Nucleic Acids Res. 21: 3329–3330.

    Article  CAS  Google Scholar 

  33. Tomb, J.-F., White, O., Kerlavage, A.R., Clayton, R.A., Sutton, G.G., Fleischmann, R.D. et al. 1997. The complete genome sequence of the gastric pathogen Helicobacterpylori. Nature 388: 539–547.

    Article  CAS  Google Scholar 

  34. Fraser, C.M., Casjens, S., Huang, W.M., Sutton, G.G., Clayton, R., Lathigra, R. et al. 1997. Genomic sequence of a Lyme disease spirochaete, Borrelia burgdorferi. Nature 390: 580–586.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Arigoni, F., Talabot, F., Peitsch, M. et al. A genome-based approach for the identification of essential bacterial genes. Nat Biotechnol 16, 851–856 (1998). https://doi.org/10.1038/nbt0998-851

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0998-851

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing