Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures

Abstract

Taxus cell culture may be an alternative source of paclitaxel and related taxane production. Significantly increased amounts of paclitaxel and baccatin III were observed in cultured cells of Taxus species after exposure to methyl jasmonate. Among the three species of Taxus tested, Taxus media showed the highest paclitaxel content while Taxus baccata showed the highest baccatin III content when 100 μM of methyl jasmonate was added to the culture media. Furthermore, the activities of methyl jasmonate and related substances for inducing paclitaxel production were compared in cell suspension cultures of T. media. Methyl jasmonate and its free acid showed the strongest promoting activity. Reduction of the keto group at the C-3 position greatly reduced this activity. cis-Jasmone, which does not have a carboxyl group at the C-1 position, had almost no activity. These results suggest that these two regions of methyl jasmonate are important for promoting the production of paclitaxel and related taxanes in Taxus cell cultures.

This is a preview of subscription content, access via your institution

Relevant articles

Open Access articles citing this article.

Access options

Buy article

Get time limited or full article access on ReadCube.

$32.00

All prices are NET prices.

References

  1. Wani, M.C., Tayler, H.L., Wall, M.E., Coggon, P., and McPhail, A.T. 1971. Plant antitumor agents VI. The isolation and structure of taxol, a novel antileukemic and antitumor agent from Taxus brevifolia . J. Am. Chem. Soc. 93: 2325–2327.

    Article  CAS  Google Scholar 

  2. Rowinsky, E.K., Cazenave, L.A., and Donehower, R.C. 1990. Taxol: a novel investigational antimicrotubule agent. J. Natl. Cancer Inst. 82: 1247–1259.

    Article  CAS  Google Scholar 

  3. Schiff, P.B., Fant, J., and Horwitz, S.B. 1979. Promotion of microtubule assembly in vitro by taxol. Nature 277: 665–667.

    Article  CAS  Google Scholar 

  4. Slichenmeyer, W.J. and von Hoff, D.D. 1991. Taxol: a new and effective anti-cancer drug. Anti-Cancer Drugs 2: 519–530.

    Article  Google Scholar 

  5. Whiterup, K.M., Look, S.A., Stasko, M.W., Ghiorzi, T.J., Muschik, G.M., and Cragg, G.M. 1990. Taxus spp. needles contain amounts of taxol comparable to the bark of Taxus brevifolia: analysis and isolation. J. Nat. Prod. 53: 1249–1255.

    Article  Google Scholar 

  6. Vidensek, N., Lim, P., Campbell, A., and Carlson, C. 1990. Taxol content in bark, wood, root, leaf, twig, and seedling from several Taxus species. J. Nat. Prod. 53: 1609–1610.

    Article  CAS  Google Scholar 

  7. Holton, R.A., Somoza, C., Kim, H.-B., Ling, F., Biediger, R.J., Boatman, P.O., et al. 1994. First synthesis of taxol. 1. Functionalization of the B ring. J. Am. Chem. Soc. 116: 1597–1598.

    Article  CAS  Google Scholar 

  8. Nicolaou, K.C., Yang, Z., Liu, J.J., Ueno, H., Nantermet, P.G., Guy, R.K. et al. 1994. Total synthesis of taxol. Nature 367: 630–634.

    Article  CAS  Google Scholar 

  9. Christen, A.A., Gibson, D.M., and Bland, J. 1991. Production of taxol or taxol-like compounds with Taxus brevifolia callus culture. U.S. Patent US 5019504.

  10. Gibson, D.M., Ketchum, R.E.B., and Christen, A.A. 1993. Initiation and growth of cell lines of Taxus brevifolia (Pacific yew). Plant Cell Rep. 12: 479–482.

    Article  CAS  Google Scholar 

  11. Kim, J.-H., Yun, J.-H., Hwang, Y.-S., Byun, S.Y., and Kim, D.-I 1995. Production of taxol and related taxanes in Taxus brevifolia cell cultures: effect of sugar. Biotechnol. Lett. 17: 101–106.

    Article  CAS  Google Scholar 

  12. Srinivasan, V., Pestchanker, L., Moser, S., Hirasuna, T.J., Taticek, R.A., and Shuler, M.L. 1995. Taxol production in bioreactors: kinetics of biomass accumulation, nutrient uptake, and taxol production by cell suspensions of Taxus baccata . Biotechnol. Bioeng. 47: 666–676.

    Article  CAS  Google Scholar 

  13. Mirjalili, N. and Linden, J.C. 1995. Gas phase composition effects on suspension cultures of Taxus cuspidata . Biotechnol. Bioeng. 48: 123–132.

    Article  CAS  Google Scholar 

  14. Mirjalili, N. and Linden, J.C. 1996. Methyl jasmonate induced production of taxol in suspension cultures of Taxus cuspidata: ethylene interaction and induction models. Biotechnol. Prog. 12: 110–118.

    Article  CAS  Google Scholar 

  15. Fett-Neto, A.G., Pennington, J.J., and DiCosmo, F. 1995. Effect of white light on taxol and baccatin III accumulation in cell cultures of Taxus cuspidata Sieb and Zucc. J. Plant Physiol. 146: 584–590.

    Article  CAS  Google Scholar 

  16. Bringi, V. and Kadkade, P. 1993. Enhanced production of taxol and taxanes by cell cultures of Taxus species. WO 93/17121

  17. Wickremesinhe, E.R.M. and Arteca, R.N. 1993. Taxus callus cultures: Initiation, growth optimization, characterization and taxol production. Plant Cell Tissue Organ Cult. 35: 181–193.

    Article  CAS  Google Scholar 

  18. Wickremesinhe, E.R.M. and Arteca, R.N. 1994. Taxus cell suspension cultures: optimizing growth and production of taxol. J. Plant Physiol. 144: 183–188.

    Article  CAS  Google Scholar 

  19. Farmer, E.E. and Ryan, C.A. 1990. Interplant communication: Airborne methyl jasmonate induces synthesis of proteinase inhibitors in plant leaves. Proc. Natl. Acad. Sci. USA 87: 7713–7716.

    Article  CAS  Google Scholar 

  20. Creelman, R.A., Tierney, M.L., and Mullet, J.E. 1992. Jasmonic acid/methyl jasmonate accumulate in wounded soybean hypocotyls and modulate wound gene expression. Proc. Natl. Acad. Sci. USA 89: 4938–4941.

    Article  CAS  Google Scholar 

  21. Falkenstein, E., Groth, B., Mithöfer, A., and Weiler, E.W. 1991. Methyl jasmonate and linolenic acid are potent inducers of tendril coiling. Planta 185: 316–322.

    Article  CAS  Google Scholar 

  22. Gundlach, H., Müller, M.J., Kutchan, T.M., and Zenk, M.H. 1992. Jasmonic acid is a signal transducer in elicitor-induced plant cell cultures. Proc. Natl. Acad. Sci. USA 89: 2389–2393.

    Article  CAS  Google Scholar 

  23. Aerts, R.J., Gisi, D., Carolis, E.D., Luca, V.D., and Baumann, T.W. 1994. Methyl jasmonate vapor increases the developmental controlled synthesis of alkaloids in Catharanthus and Cinchona seedlings. Plant J. 5: 635–643.

    Article  CAS  Google Scholar 

  24. Franceschi, V.R. and Grimes, H.D. 1991. Induction of soybean vegetative storage proteins and anthocyanins by low-level atmospheric methyl jasmonate. Proc. Natl. Acad. Sci. USA 88: 6745–6749.

    Article  CAS  Google Scholar 

  25. Mizukami, H., Tabira, Y., and Ellis, B.E. 1993. Methyl jasmonate-induced ros-marinic acid biosynthesis in Lithospermum erythrorhizon cell suspension cultures. Plant Cell Rep. 12: 706–709.

    Article  CAS  Google Scholar 

  26. Falzone, C.J., Benesi, A.J., and Lecomte, J.T.J. 1992. Characterization of taxol in methylene chloride by NMR spectroscopy. Tetrahedron Lett. 33: 1169–1172.

    Article  CAS  Google Scholar 

  27. Chmurny, G.N., Hilton, B.D., Brobst, S., Look, S.A., Witherup, K.M., and Beutler, J.A. 1992. 1H- and 13C-NMR assignments for taxol, 7-epi-taxol, and cephalomannine. J. Nat. Prod. 55: 414–423.

    Article  CAS  Google Scholar 

  28. Fleming, P.E., Knaggs, A.R., He, X.-G., Mocek, U., and Floss, H.G. 1994. Biosynthesis of taxoids. Mode of attachment of the taxol side chain. J. Am. Chem. Soc. 116: 4137–4138.

    Article  CAS  Google Scholar 

  29. Koda, Y., Kikuta, Y., Tazaki, H., Tsujino, Y., Sakamura, S., and Yoshihara, T. 1991. Potato tuber-inducing activities of Jasmonic acid and related compounds. Phytochemistry 30: 1435–1438.

    Article  CAS  Google Scholar 

  30. Ueda, J., Kato, J., Yamane, H., and Takahashi, N. 1981. Inhibitory effect of methyl jasmonate and its related compounds on kinetin-induced retardation of oat leaf senescence. Physiol. Plant 52: 305–309.

    Article  CAS  Google Scholar 

  31. Lloyd, G.B. and McCown, B.H. 1981. Commercially feasible micropropagation of mountain laurel, Kalmia latifolia, by the use of shoot-tip culture. Proc. Int. Plant Prop. Soc. 30: 421–427.

    Google Scholar 

  32. Bitsch, F., Ma, W., Macdonald, F., Nieder, M., and Shackleton, C.H.L. 1993. Analysis of taxol and related diterpenoids from cell cultures by liquid chromatography-electrospray mass spectrometry. J. Chromatogr. 615: 273–280.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Yukimune, Y., Tabata, H., Higashi, Y. et al. Methyl jasmonate-induced overproduction of paclitaxel and baccatin III in Taxus cell suspension cultures. Nat Biotechnol 14, 1129–1132 (1996). https://doi.org/10.1038/nbt0996-1129

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0996-1129

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing