Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Agrobacterium-Mediated Transformation of Plum (Prunus domestica L.) Hypocotyl Slices and Regeneration of Transgenic Plants

Abstract

Plum plants were regenerated from hypo-cotyl segments derived from the embryonic axes of ungerminated seeds stored for up to six months at 4°C. Shoots were produced in 45 percent of the explants with an average of 8 shoots per explant. This regeneration system was used for Agrobacterium-mediated transformation with plasmids containing genes for neo-mycin phosphotransferase (NPTII) and β-glucuronidase (GUS). Approximately 25 percent of the explants produced shoots on regeneration medium in the presence of antibiotics, and 30 percent of these could be rooted. Putative transgenic plants expressed NPTII and GUS activity, and Southern analyses demonstrated integration of T-DNA into the plum genome.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Filatti, J.J., Selmer, J., McCown, B., Haissig, B. and Comai, L. 1987. Agrobacterium-mediated transformation and regeneration of Populus. Mol. Gen. Genet. 206: 192–199.

    Article  Google Scholar 

  2. McGranahan, G.H., Leslie, C.A., Uratsu, S.L., Martin, L.A. and Dandekar, A.M. 1988. Agrobacterium-mediated transformation of walnut somatic embryos and regeneration of transgenic plants. Bio/Technology 6: 800–804.

    CAS  Google Scholar 

  3. James, D.J., Passey, A.J., Barbara, D.J. and Bevan, M. 1989. Genetic transformation of apple (Malus pumila Mill) using a disarmed Ti-binary vector. Plant Cell Rep. 7: 658–661.

    CAS  PubMed  Google Scholar 

  4. Fitch, M.M.M., Manshardt, R.M., Gonsalves, D., Slighton, J.L. and Sanford, J. 1990. Stable transformation of papaya via microprojectile bombardment. Plant Cell Rep. 9: 189–194.

    CAS  PubMed  Google Scholar 

  5. Hammerschlag, F.A., Bauchan, G. and Scorza, R. 1985. Regeneration of peach plants from callus derived from immature embryos. Theor. Appl. Genet. 70: 248–251.

    Article  CAS  PubMed  Google Scholar 

  6. Mante, S., Scorza, R. and Cordts, J.M. 1989. Plant regeneration from cotyledons of Prunus persica, Prunus domestica and Prunus cerasus. Plant Cell Tissue and Organ Cult. 19: 1–11.

    Article  CAS  Google Scholar 

  7. Lane, D.W. and Cossio, F. 1986. Adventitious shoots from cotyledons of immature cherry and apricot embryos. Can. J. Plant Sci. 66: 953–959.

    Article  CAS  Google Scholar 

  8. Pieterse, R.E. 1989. Regeneration of plants from callus and embryos of ‘Royal’ apricot. Plant Cell Tissue and Organ Cult. 19: 175–179.

    Article  Google Scholar 

  9. Meng, X. and Zhou, W. 1981. Induction of embryoid and production of plantlets in vitro from endosperm of peach. Acta. Agric. Univ. Peking. 7: 95–98.

    Google Scholar 

  10. Jones, O.P., Gayner, J.A. and Watkins, R. 1984. Plant regeneration from callus tissue cultures of the cherry rootstock Colt (Prunus avium x P. cerasus) and the apple rootstock M.25 (Malus pumila). J. Hort. Sci. 59: 463–467.

    Article  Google Scholar 

  11. Ochatt, S.J., Cocking, E.C. and Power, J.B. 1987. Isolation culture and plant regeneration of Colt cherry (Prunus avium x pseudo cerasus) protoplasts. Plant Sci. 50: 139–143.

    Article  Google Scholar 

  12. Mehra, A. and Mehra, P.N. 1974. Organogenesis and plantlet formation in vitro in almond. Bot. Gaz. 135: 61–73.

    Article  Google Scholar 

  13. Druart, Ph. and Gruselle, R. 1986. Plum (Prunus domestica), p. 130–154. In: Biotechnology in Agriculture and Forestry, Vol. 1: Trees. Y. P. S. Bajaj (Ed.). Springer-Verlag, New York.

    Google Scholar 

  14. Comai, L., Moran, P. and Maslyar, D. 1990. Novel and useful properties of a chimeric plant promoter combining CaMV 35S and MAS elements. Plant Mol. Biol. 15: 373–381.

    Article  CAS  PubMed  Google Scholar 

  15. Langridge, W.H.R., Fitzgerald, K.J., Koncz, C., Schell, J. and Szalay, A.A. 1989. Dual promoter of Agrobacterium tumefaciens mannopine synthase genes is regulated by plant growth hormones. Proc. Natl. Acad. Sci. USA 86: 3219–3223.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sanger, M., Daubert, S. and Goodman, R.M. 1990. Characteristics of a strong promoter from figwort mosaic virus: comparison with the analogous 35S promoter from cauliflower mosaic virus and the regulated mannopine synthase promoter. Plant Mol. Biol. 14: 433–443.

    Article  CAS  PubMed  Google Scholar 

  17. Murashige, T. and Skoog, F. 1962. A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant. 15: 473–497.

    Article  CAS  Google Scholar 

  18. O'Brien, T.P. and McCully, M.E. 1981. The Study of Plant Structure, Principles and Selected Methods. Termarcarphi Pty., Ltd., Melbourne, Australia.

    Google Scholar 

  19. Hood, E.E., Helmer, G.L., Fraley, R.T. and Chilton, M. 1986. The hypervirulence of Agrobacterium tumefaciens A281 is encoded in a region of PTiBo542 outside of T-DNA. J. Bact. 168: 1291–1301.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Bradford, M.M. 1976. A rapid and sensitive method for quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal. Biochem. 71: 248–254.

    Article  Google Scholar 

  21. McDonnel, R.E., Clark, R.D., Smith, W.A. and Hinchee, M.A. 1987. A simplified method for the detection of neomycin phospho-transferase II activity in transformed plant tissues. Plant Mol. Biol. Rep. 5: 380–386.

    Article  Google Scholar 

  22. Rao, R.N. and Rogers, S.G. 1979. Plasmid pKC7: a vector containing ten restriction endonuclease sites suitable for cloning DNA segments. Gene 7: 79–82.

    Article  CAS  PubMed  Google Scholar 

  23. Jefferson, R.A. 1987. Assaying chimeric genes in plants: The GUS gene fusion system. Plant Mol. Biol. Rep. 5: 387–405.

    Article  CAS  Google Scholar 

  24. Scorza, R., Morgens, P.H., Cordts, J.M., Mante, S. and Callahan, A.M. 1990. Agrotocterium-mediated transformation of peach (Prunus persica L. Batsch) leaf segments, immature embryos, and long-term embryogenic callus. In Vitro Cell. Dev. Biol. 26: 829–834.

    Article  CAS  Google Scholar 

  25. Maniatis, T., Fritsch, E.F. and Sambrook, J. 1982. Molecular Cloning, a Laboratory Manual. Cold Spring Harbor, N.Y.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mante, S., Morgens, P., Scorza, R. et al. Agrobacterium-Mediated Transformation of Plum (Prunus domestica L.) Hypocotyl Slices and Regeneration of Transgenic Plants. Nat Biotechnol 9, 853–857 (1991). https://doi.org/10.1038/nbt0991-853

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0991-853

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing