Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Generation of Human Embryonic Kidney Cells with Extended In Vitro Life Span through Viral Oncogene Transfection

Abstract

Primary cultures of human embryonic kidney (HEK) cells exhibit an in vitro life span of approximately 15 to 20 generations. We report here that transfection of HEK cells with the early gene region of the SV40 DNA tumor virus results in a five-fold increase in cell life span. These cells with extended life span were morphologically similar to normal HEK cells, retained their attachment-dependence for growth and ceased growth at confluence. After 70 to 90 generations in vitro, the transfected cells entered a crisis period, marked by continued basal metabolism in the absence of cell division. Two human kidney cell lines of indefinite life span were isolated from clonal populations of these transfected cells in crisis. These “immortal” HEK cells also demonstrated relatively little evidence of oncogenic transformation, although their morphology and growth characteristics did differ somewhat from the primary HEK cells and the HEK cells with extended life span.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Hayflick, L. 1965. The limited in-vitro life span of human diploid cell strains. Exp. Cell Res. 37:614–636.

    Article  CAS  Google Scholar 

  2. Hayflick, L. 1979. The cellular basics for biological aging, p. 159–186. In: Handbook of the Biology of Aging. C. E. Finch and L. Hayflick (Eds.). Von Nostrand Reinhold.

    Google Scholar 

  3. Lin, M.C., Shay-Whey, M.K., Dykman, D.D., Beckner, S.K. and Shih, T.Y. 1982. Loss and restoration of glucagon receptors and responsiveness in a transformed kidney cell line. Exp. Cell Res. 142:181–189.

    Article  CAS  Google Scholar 

  4. Cherington, V., Brown, M., Paucha, E., St. Loius, J., Speigelman, B.M. and Roberts, T.M. 1988. Separation of simian virus 40 large-T-antigen transforming and origin-binding functions from their ability to block differentiation. Mol. Cell Biol. 8:1380–1384.

    Article  CAS  Google Scholar 

  5. Yamashita, K., Hitoi, A., Taniguchi, N., Yokosawa, N., Tsukada, Y. and Kobata, A. 1983. Comparative study of the sugar chains of γ-glutamyltranspeptidases purified from rat liver and rat AH-66 hepatoma cells. Cancer Res. 43:5059–5063.

    CAS  PubMed  Google Scholar 

  6. Land, H., Parada, L.F. and Weinberg, R.A. 1983. Tumorigenic conversion of primary embryo fibroblasts requires at least two cooperating oncogenes. Nature 304:596–602.

    Article  CAS  Google Scholar 

  7. Ruley, H.E. 1983. Adenovirus early region 1A enables viral and cellular transforming genes to transform primary cells in culture. Nature 304:602–606.

    Article  CAS  Google Scholar 

  8. Oshimur, M., Gilmer, T.M. and Barrett, J.C. 1985. Nonrandom loss of chromosome 15 in Syrian hamster tumors by v-Ha-ras plus v-myc oncogenes. Nature 316:636–639.

    Article  Google Scholar 

  9. Bishop, J.M. 1987. The molecular genetics of cancer. Science 235:305–311.

    Article  CAS  Google Scholar 

  10. Müeller, R. and Wagner, E.F. 1984. Differentiation of F9 teratocarcinoma stem cells after transfer of c-fos proto oncogenes. Nature 311:438–442.

    Article  Google Scholar 

  11. Holt, J.T., Redner, R.L. and Neinhuis, A. 1988. An oligomer complementary to c-myc mRNA inhibits proliferation of HL-60 pro-myelocytic cells and induces differentiation. Mol. Cell. Biol. 8:963–973.

    Article  CAS  Google Scholar 

  12. DeCaprio, J.A., Ludlow, J.W., Frigge, J., Shew, J.Y., Huang, C.-M., Lee, W.-H., Marsiho, E., Paucha, E. and Livingston, D.M. 1988. SV40 large tumor antigen forms a specific complex with the product of the retinoblastoma susceptibility gene. Cell 54:275–283.

    Article  CAS  Google Scholar 

  13. Ludlow, J.W., DeCaprio, J.A., Huang, G-M., Lee, W-H., Paucha, E., and Livingston, D.M. 1989. SV40 large T antigen binds preferentially to an underphosphorylated member of the retinoblastoma susceptibility gene product family. Cell 56:57–65.

    Article  CAS  Google Scholar 

  14. Whyte, P., Williamson, N.M. and Harlow, E. 1989. Cellular targets for transformation by the adenovirus E1A proteins. Cell 56:67–75.

    Article  CAS  Google Scholar 

  15. Weinberg, R.A. 1985. The action of oncogenes in the cytoplasm and nucleus. Science 230:770–776.

    Article  CAS  Google Scholar 

  16. Nicholaiew, N. and Dautry, F. 1986. Growth stimulation of rat primary embryo fibroblasts by the human myc gene. Exp. Cell Res. 166:357–369.

    Article  Google Scholar 

  17. Curran, T., Miller, A.D., Zokas, L. and Verma, I.M. 1984. Viral and cellular fos proteins: A comparative analysis. Cell 36:259–268.

    Article  CAS  Google Scholar 

  18. Houweling, A., Van Den Elsen, P.J. and Van Der Eb, A.J. 1980. Partial transformation of primary rat cells by the leftmost 4.5% fragment of adenovirus 5 DNA. Virology 105:537–550.

    Article  CAS  Google Scholar 

  19. Roussoulzadegan, M., Cowie, A., Carr, A., Glaichenhaus, N., Kamen, R. and Cuzin, F. 1982. The roles of individual polyoma virus early proteins in oncogenic transformation. Nature 300:713–718.

    Article  Google Scholar 

  20. Stacey, D.W. and Rung, H.-F. 1984. Transformation of NIH 3T3 cells by microinjection of Ha-ras p21 protein. Nature 310:508–511.

    Article  CAS  Google Scholar 

  21. Livingston, D.M. and Bradley, M.K. 1987. The simian virus 40 large T antigen: A lot packed into a little. Mol. Biol. Med. 4:63–80.

    CAS  PubMed  Google Scholar 

  22. Bikel, I., Montano, X., Agha, M.E., Brown, M., McCormack, M., Boltax, J. and Livingston, D.M. 1987. SV40 small t antigen enhances the transformation activity of limiting concentrations of SV40 large t antigen. Cell 48:321–330.

    Article  CAS  Google Scholar 

  23. Choi, Y., Lee, I. and Ross, S.R. 1988. Requirement for simian virus 40 small tumor antigen in tumorigenesis in transgenic mice. Mol. Cell. Biol. 8:3382–3390.

    Article  CAS  Google Scholar 

  24. Sack, G.H. Jr., 1981. Human cell transformation by simian virus 40: A review. In Vitro 17:1–19.

    Article  CAS  Google Scholar 

  25. Chang, S.E. 1986. In-vitro transformation of human epithelial cells. Biochim. Biophys Acta 823:161–194.

    CAS  PubMed  Google Scholar 

  26. Chang, L.-S., Pater, M.M., Hutchinson, N.I. and DiMayorca, G. 1984. Transformation by purified early genes of simian virus 40. Virology 133:341–353.

    Article  CAS  Google Scholar 

  27. Gorman, C., Padmanabhan, R. and Howard, B.H. 1983. High efficiency DNA-mediated transformation of primate cells. Science 221:551–553.

    Article  CAS  Google Scholar 

  28. Gorman, C.M., Marlino, G.T., Willingham, M.C., Pastan, I. and Howard, B.H. 1982. The rous sarcoma virus long terminal repeat is a strong promoter when introduced into a variety of eukaryotic cells by DNA-mediated transfection. Proc. Natl. Acad. Sci. USA 79:6777–6781.

    Article  CAS  Google Scholar 

  29. Graham, F.L., Smiley, J., Russell, W.C. and Nairn, R. 1977. Characteristics of a human cell line transformed by DNA from human adenovirus type 5. J. Gen. Virol. 36:59–72.

    Article  CAS  Google Scholar 

  30. Taub, M. and Sato, G. 1980. Growth of functional primary cultures of kidney epithelial cells in denned medium. J. Cell. Physiology 105:369–378.

    Article  CAS  Google Scholar 

  31. Shein, H.M. and Enders, J.F. 1962. Multiplication and cytopathogenicity of simian vacuolating virus 40 in cultures of human tissues. Proc. Soc. Exp. Biol. and Med. 109:495–500.

    Article  CAS  Google Scholar 

  32. Major, E.O. and Matsumura, P. 1984. Human embryonic kidney cells: stable transformation with an origin-defective simian virus 40 DNA and use as hosts for human papovavirus replication. Mol. Cell. Biol. 4:379–382.

    Article  CAS  Google Scholar 

  33. Chang, L.-S., Pan, S., Pater, M.M. and DiMayorca, G. 1985. Differential requirement for SV40 early genes in immortalization and transformation of primary rat and human embryonic kidney cells. Virology 146:246–261.

    Article  CAS  Google Scholar 

  34. Osborn, M. and Weber, K. 1975. Simian virus 40 gene A function and maintenance of t transformation. J. Virol. 15:636–644.

    CAS  PubMed  PubMed Central  Google Scholar 

  35. Petit, C.A., Gardes, M. and Feutemn, J. 1983. Immortalization of rodent embryo fibroblasts by SV40 is maintained by the A gene. Virology 127:74–82.

    Article  CAS  Google Scholar 

  36. Gotoh, S., Gelb, L. and Schlessinger, D. 1979. SV40-transformed human diploid cells that remain transformed throughout their limited lifespan. J. Gen. Virol. 42:409–414.

    Article  CAS  Google Scholar 

  37. Pereira-Smith, O.M. and Smith, J.R. 1981. Expression of SV40 T antigen in finite lifespan hybrids of normal and SV40-transformed fibroblasts. Som. Cell Gen. 7:411–412.

    Article  CAS  Google Scholar 

  38. Pereira-Smith, O.M. and Smith, J.R. 1987. Functional simian virus 40 T antigen is expressed in hybrid cells having finite proliferative potential. Mol. Cell. Biol. 7:1541–1544.

    Article  CAS  Google Scholar 

  39. Levitt, A., Chen, S., Blanck, G. and Pollack, R.E. 1985. Two integrated partial repeats of simian virus 40 together code for a super-T antigen. Mol. Cell. Biol. 5:742–750.

    Article  CAS  Google Scholar 

  40. May, E., Jeltsch, J.-M. and Gannon, F. 1981. Characterization of a gene encoding a 115K super T antigen expressed by a SV40-transformed rat cell line. Nuc. Acids Res. 9:4111–4129.

    Article  CAS  Google Scholar 

  41. Clayton, C.E., Lovett, M. and Rigby, P.W.J. 1982. Functional analysis of a simian virus 40 super T antigen. J. Virol. 44:974–982.

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Butel, J.S., Wong, C. and Evans, B.K. 1986. Fluctuation of simian virus 40 (SV40) super T-antigen expression in tumors induced by SV40-transformed mouse mammary epithelial cells. J. Virol. 60:817–821.

    CAS  PubMed  PubMed Central  Google Scholar 

  43. Chen, S., Verderame, M., Lo, A. and Pollack, R. 1981. Nonlytic simian virus 40-specific 100K phosphoprotein is associated with anchorage-independent growth in simian virus 40-transformed and revertant mouse cell lines. Mol. Cell. Biol. 1:994–1006.

    Article  CAS  Google Scholar 

  44. Reich, N.C., Oren, M. and Levine, A.J. 1983. Two distinct mechanisms regulate the levels of a cellular tumor antigen, p53. Mol. Cell. Biol. 3:2143–2150.

    Article  CAS  Google Scholar 

  45. Rubin, H., Figge, J., Bladon, M.T., Chen, L.B., Ellman, M., Bikel, I., Farrell, M., and Livingston, D.M. 1982. Role of small t antigen in the acute transforming activity of SV40. Cell 20:469–480.

    Article  Google Scholar 

  46. Bikel, I., Mamon, H., Brown, E.L., Boltax, J., Agha, M. and Livingston, D.M. 1986. The t-unique coding domain is important to the transformation maintenance function of the simian virus 40 small t antigen. Mol. Cell. Biol. 6:1172–1178.

    Article  CAS  Google Scholar 

  47. Ponten, J. 1985. Lifespan and “immortalization” of mammalian cells. Anticancer Res. 5:387–391.

    Google Scholar 

  48. Jat, P.S. and Sharp, P.A. 1986. Large T antigens of simian virus 40 and polyomavirus efficiently establish primary fibroblasts. J. Virol. 59:746–750.

    CAS  PubMed  PubMed Central  Google Scholar 

  49. Asselin, C. and Bastin, M. 1985. Sequences from polyomavirus and simian virus 40 large T genes capable of immortalizing primary rat embryo fibroblasts. J. Virol. 56:958–968.

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Girardi, A.J., Jensen, F.C. and Koprowski, H. 1965. SV40-induced transformation of human diploid cells: Crisis and recovery. J. Cell. Comp. Physiol. 65:69–84.

    Article  CAS  Google Scholar 

  51. Zouzias, D., Jha, K.K., Basilico, C. and Ozar, H.L. 1980. Human fibroblasts transformed by the early region of SV40 DNA: analysis of “free” viral DNA sequences. Virology 104:439–453.

    Article  CAS  Google Scholar 

  52. Periera-Smith, O.M. and Smith, J.R. 1983. Evidence for the recessive nature of cellular immortality. Science 221:964–966.

    Article  Google Scholar 

  53. Neufeld, D.S., Ripley, S., Henderson, A. and Ozar, H.L. 1987. Immortalization of human fibroblasts transformed by origin-defective simian virus 40. Mol. Cell. Biol. 6:2794–2802.

    Article  Google Scholar 

  54. Van der Eb, A.J. and Graham, F.L. 1980. Assay for transforming activity of tumor virus DNAs. Methods Enzymol. 65:826–839.

    Article  CAS  Google Scholar 

  55. Bouck, N. and DiMayorca, G. 1979. Evaluation of chemical carcinogenicity by in vitro neoplastic transformation. Meth. Enzymol. 58:296–302.

    Article  CAS  Google Scholar 

  56. Graham, R.C. and Karnovsky, M.J. 1965. The early stages of absorption of injected horsradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J. Histochem. Cytochem. 14:291–302.

    Article  Google Scholar 

  57. Smith, P.K. et al. 1985. Measurement of protein using bicinchoninic acid. Anal. Chem. 105:76–85.

    Google Scholar 

  58. Hinson, D.L. and Webber, R.J. 1988. Miniaturization of the BCA protein assay. Biotechniques 6:14–16.

    CAS  PubMed  Google Scholar 

  59. Laemmli, U.K. 1970. Cleavage of structural proteins during the assembly of the head of the bacteriophage T4. Nature 227:680–685.

    Article  CAS  Google Scholar 

  60. Burnette, W.H. 1981. Western blotting: Electrophoretic transfer of proteins from SDS-polyacrylamide gels to unmodified nitrocellulose and radiographic detection with antibody and with radioiodinated protein A. Anal. Biochem. 112:195–203.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abcouwer, S., Robinson, P., Goochee, C. et al. Generation of Human Embryonic Kidney Cells with Extended In Vitro Life Span through Viral Oncogene Transfection. Nat Biotechnol 7, 939–946 (1989). https://doi.org/10.1038/nbt0989-939

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0989-939

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing