Import of Polypeptides into Chloroplasts

Abstract

The majority of the protein components of chloroplasts are synthesized outside the organelle and are subsequently imported. These imported polypeptides are produced as precursors containing an amino-terminal extension. Recent experiments have demonstrated that foreign polypeptides can be imported into chloroplasts when fused to these amino-terminal extensions. This ability provides exciting opportunities for improvement of economically important plants through genetic manipulation.

Access optionsAccess options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

References

  1. 1

    Ellis, R.J. 1981. Chloroplast proteins: synthesis, transport and assembly. Annu. Rev. Plant Physiol. 32: 111–137.

  2. 2

    Cashmore, A.R. 1976. Protein synthesis in plant leaf tissue: The sites of synthesis of the major proteins. J. Biol. Chem. 251: 2848–2853.

  3. 3

    Van den Broeck, G., Timko, M.P., Kausch, A.P., Cashmore, A.R., Van Montagu, M. and Herrera-Estrella, L. 1985. Targeting of foreign protein to chloroplasts by fusion to the transit peptide from the small subunit of ribulose-1,5-bisphosphate carboxylase. Nature 313: 358–363.

  4. 4

    Schreier, P.H., Seftor, E.A., Schell, J. and Bohnert, H.J. 1985. The use of nuclear encoded sequences to direct the light-regulated synthesis and transport of a foreign protein into plant chloroplasts. EMBO J. 4: 25–32.

  5. 5

    Dobberstein, B., Blobel, G. and Chua, N.-H. 1977. In vitro synthesis and processing of a putative precursor for the small subunit of ribulose-1,5-bisphosphate carboxylase of Chlamydomonas reinhardtii. Proc. Natl. Acad. Sci. USA 74: 1082–1085.

  6. 6

    Cashmore, A.R., Broadhurst, M.K. and Gray, R.E. 1978. Cell-free synthesis of leaf protein. Identification of an apparent precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc. Natl. Acad. Sci. USA 75: 655–659.

  7. 7

    Highfield, P.E. and Ellis, R.J. 1978. Synthesis and transport of the small subunit of ribulose bisphosphate carboxylase. Nature 27: 420–424.

  8. 8

    Chua, N.-H. and Schmidt, G.W. 1978. Post-translational transport into intact chloroplasts of a precursor to the small subunit of ribulose-1,5-bisphosphate carboxylase. Proc. Natl. Acad. Sci. USA 75: 6110–6114.

  9. 9

    Walter, P., Gilmore, R. and Blobel, G. 1984. Protein translocation across the endoplasmic reticulum. Cell 38: 5–8.

  10. 10

    Apel, K. and Kloppstech, K. 1978. Light-induced appearance of mRNA coding for the apoprotein of the light-harvesting chlorophyll a/b protein. Eur. J. Biochem. 85: 581–588.

  11. 11

    Schmidt, G.W., Bartlett, S.G., Grossman, A.R., Cashmore, A.R. and Chua, N.-H. 1981. Biosynthetic pathways of two polypeptide subunits of the light-harvesting chlorophyll a/b protein complex. J. Cell Biol. 91: 468–478.

  12. 12

    Grossman, A., Bartlett, S. and Chua, N.-H. 1980. Energy-dependent uptake of cytoplasmically synthesized polypeptides by chloroplasts. Nature 285: 625–628.

  13. 13

    Grossman, A.R., Bartlett, S., Schmidt, G.W., Mullet, J.E. and Chua, N.-H. 1982. Optimal conditions for post-translational uptake of proteins by isolated chloroplasts. J. Biol. Chem. 257: 1558–1563.

  14. 14

    Westhoff, P., Jansson, C., Klein-Hitpass, L., Berzborn, R., Larsson, C. and Bartlett, S. 1985. Intracellular coding sites of polypeptides associated with photosynthetic oxygen evolution of photosystem II. Plant Mol. Biol. 4: 137–146.

  15. 15

    Hauska, G.A., McCarty, R.E., Berzborn, R.J. and Racker, E. 1971. The function of plastocyanin and its interaction with a specific antibody. J. Biol. Chem. 246: 3524–3531.

  16. 16

    Cline, K., Werner-Washburne, M., Lubben, T.H. and Keegstra, K. 1985. Precursors to two nuclear-encoded chloroplast proteins bind to the outer envelope membrane before being imported into chloroplasts. J. Biol. Chem. 260: 3691–3696.

  17. 17

    Nelson, N. and Schatz, G. 1979. Energy-dependent processing of cytoplasmically made precursors to mitochondrial proteins. Proc. Natl. Acad. Sci. USA 76: 4365–4369.

  18. 18

    Schleyer, M., Schmidt, B. and Neupert, W. 1982. Requirement of a membrane potential for the post-translational transfer of proteins into mitochondria. Eur. J. Biochem. 125: 109–116.

  19. 19

    Kolansky, D.M., Conboy, J.G., Fenton, W.A. and Rosenberg, L.E. 1982. Energy-dependent translocation of the precursor of ornithine transcarbamylase by isolated rat liver mitochondria. J. Biol. Chem. 257: 8467–8471.

  20. 20

    Gasser, S.M., Daum, G. and Schatz, G. 1982. Import of proteins into mitochondria. Energy-dependent uptake of precursors by isolated mitochondria. J. Biol. Chem. 257: 13034–13041.

  21. 21

    Date, T., Zwizinski, C., Ludmerer, S. and Wickner, W. 1980. Mechanisms of membrane assembly: Effects of energy poisons on the conversion of soluble M13 coliphage procoate to membrane-bound coat protein. Proc. Natl. Acad. Sci. USA 77: 827–831.

  22. 22

    Pfisterer, J., Lachmann, P. and Kloppstech, K. 1982. Transport of proteins into chloroplasts. Binding of nuclear-coded chloroplast proteins to the chloroplast envelope. Eur. J. Biochem. 126: 143–148.

  23. 23

    Miura, S., Mori, M. and Tatibana, M. 1983. Transport of ornithine carbamoyltransferase precursor into mitochondria. Stimulation by potassium ion, magnesium ion, and a reticulocyte cytosolic protein(s). J. Biol. Chem. 258: 6671–6674.

  24. 24

    Argan, C., Lusty, C.J. and Shore, G.C. 1983. Membrane and cytosolic components affecting transport of the precursor for ornithine carbamyltransferase into mitochondria. J. Biol. Chem. 258: 6667–6670.

  25. 25

    Ohta, S. and Schatz, G. 1984. A purified precursor polypeptide requires a cytosolic protein fraction for import into mitochondria. EMBO J. 3: 651–657.

  26. 26

    Firgaira, F.A., Hendrick, J.P., Kalousek, F., Kraus, J.P. and Rosenberg, L.E. 1984. RNA required for import of precursor proteins into mitochondria. Science 226: 1319–1322.

  27. 27

    Robinson, C. and Ellis, R.J. 1984. Transport of proteins into chloroplasts: Partial purification of a chloroplast protease involved in the processing of imported precursor polypeptides. Eur. J. Biochem. 142: 337–342.

  28. 28

    Robinson, C. and Ellis, R.J. 1984. Transport of proteins into chloroplasts: The precursor of small subunit of ribulose bisphosphate carboxylase is processed to the mature size in two step. Eur. J. Biochem. 142: 343–346.

  29. 29

    Mishkind, M.L., Wessler, S.R. and Schmidt, G.W. 1985. Functional determinants in transit sequences: Import and partial maturation by vascular plant chloroplasts of the ribulose-1,5-bisphosphate carboxylase small subunit of Chlamydomonas. J. Cell Biol. 100: 226–234.

  30. 30

    Gasser, S.M., Ohashi, A., Daum, G., Bohni, P.C., Gibson, J., Reid, G.A., Yonetani, T. and Schatz, G. 1982. Imported mitochondrial proteins cytochrome b2 and cytochrome c1 are processed in two steps. Proc. Natl. Acad. Sci. USA 79: 267–271.

  31. 31

    Ohashi, A., Gibson, J., Gregor, I. and Schatz, G. 1982. Import of proteins into mitochondria. The precursor of cytochrome C1 is processed in two steps, one of them Heme-dependent. J. Biol. Chem. 257: 13042–13047.

  32. 32

    Bohni, P., Gasser, S., Leaver, C. and Schatz, G. 1980. A matrix-localized mitochondrial protease processing cytoplasmically-made precursor to mitochondrial proteins, 423–433. In: The Organization and Expression of the Mitochondrial Genome. Kroon, A. M. and Saccone, C. (eds.), Elsevier/North-Holland, Amsterdam.

  33. 33

    Bohni, P.C., Daum, G. and Schatz, G. 1983. Import of proteins into mitochondria. Partial purification of a matrix-located protease involved in cleavage of mitochondrial precursor polypeptides. J. Biol. Chem. 258: 4937–4943.

  34. 34

    McAda, P.C. and Douglas, M.G. 1982. A neutral metallo endoprotease involved in the processing of an F1-ATPase subunit precursor in mitochondria. J. Biol. Chem. 257: 3177–3182.

  35. 35

    Schmidt, G.W., Devillers-Thiery, A., Desruisseaux, H., Blobel, G. and Chua, N.-H. 1979. NH2-terminal amino acid sequences of precursor and mature forms of the ribulose-1,5-bisphosphate carboxylase small subunit from Chlamydomonas reinhardtii. J. Cell Biol. 83: 615–622.

  36. 36

    Coruzzi, G., Broglie, R., Cashmore, A.R. and Chua, N.-H. 1983. Nucleotide sequences of two pea cDNA clones encoding the small subunit of ribulose bisphosphate carboxylase and the major chlorophyll a/b binding thylakoid polypeptide. J. Biol. Chem. 258: 1399–1402.

  37. 37

    Cashmore, A.R. 1983. Nuclear genes encoding the small subunit of ribulose-1,5-bisphosphate carboxylase, p. 29–38. In: Genetic Engineering of Plants, A. Hollaender, (ed.) Plenum Press.

  38. 38

    Coruzzi, G., Broglie, R., Edwards, C. and Chua, N.-H. 1984. Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5-bisphosphate carboxylase. EMBO J. 4: 1671–l679.

  39. 39

    Berry-Lowe, S.L., McKnight, T.D., Shah, D.M. and Meagher, R.B. 1982. The nucleotide sequence, expression, and evolution of one member of a multigene family encoding the small subunit of ribulose-1,5-bisphosphate carboxylase in soybean. J. Mol. Appl. Genet. 1: 483–498.

  40. 40

    Broglie, R., Coruzzi, G., Lamppa, G., Keith, B. and Chua, N.-H. 1983. Structural analysis of nuclear genes coding for the precursor to the small subunit of wheat ribulose-1,5-bisphosphate carboxylase. Bio/Technology 1: 55–61.

  41. 41

    Stiekema, W.J., Wimpee, C.F. and Tobin, E.M. 1983. Nucleotide sequence encoding the precursor of the small subunit of ribulose-1,5-bisphosphate carboxylase from Lemna gibba L.G-3. Nucl Acids Res. 11: 8051–8061.

  42. 42

    Mazur, V.J. and Chui, C.-F. 1985. Sequence of a genomic DNA clone for the small subunit of ribulose-bis-phosphate carboxylase-oxygenase from tobacco. Nuc. Acids Res. 13: 2373–2386.

  43. 43

    Cashmore, A.R. 1984. Structure and expression of a pea nuclear gene encoding a chlorophyll a/b binding polypeptide. Proc. Natl. Acad. Sci. USA 81: 2960–2964.

  44. 44

    Karlin-Neuman, G.A., Kohorn, B.D., Thornber, J.P. and Tobin, E.M. 1985. A chlorophyll a/b-protein encoded by a gene containing intron with characteristics of a transposable element. J. Mol. Appl. Genet. 3: 45–61.

  45. 45

    Lamppa, G.K., Morelli, G. and Chua, N.-H. 1985. Structure and developmental regulation of a wheat gene encoding the major chlorophyll a/b-binding polypeptide. Mol. Cell Biol. 5: 1370–1378.

  46. 46

    Dunsmuir, P. 1985. The petunia chlorophyll a/b binding protein genes: a comparison of Cab genes from different gene families. Nuc. Acids Res. 13: 2503–2518.

  47. 47

    Walter, P., Ibrahimi, I. and Blobel, G. 1981. Translocation of proteins across the endoplasmic reticulum I. Signal recognition protein (SRP) binds to in vitro assembled polysomes synthesizing secretory protein. J. Cell Biol. 91: 545–550.

  48. 48

    von Heijne, G. 1984. Analysis of the distribution of charged residues in the N-terminal region of signal sequences: implications for protein export in prokaryotic and eukaryotic cells. EMBO J. 3: 2315–2318.

  49. 49

    Hurt, E.C., Pesold-Hurt, B. and Schatz, G. 1984. The amino-terminal region of an imported mitochondrial precursor polypeptide can direct cytoplasmic dihydrofolate reductase into the mitochondrial matrix. EMBO J. 3: 3149–3156.

  50. 50

    Hirschberg, J. and McIntosh, L. Molecular basis of herbicide resistance in Amaranthus hybridus. Science 222: 1346–1348.

  51. 51

    Erickson, J.M., Rahire, M., Bennoun, P., Delepelaire, P., Diner, B. and Rochaix, J.-D. 1984. Herbicide resistance in Chlamydomonas reinhardtii results from a mutation in the chloroplast gene for the 32-kilodalton protein of photosystem II. Proc. Natl. Acad. Sci. USA 81: 3617–3621.

  52. 52

    Hallick, R.B. 1984. Chloroplast-coded atrazine resistance in Solanum nigrum: psbA loci from susceptible and resistant biotypes are isogenic except for a single codon change. Nuc. Acids Res. 12: 9489–9496.

  53. 53

    Mullet, J.E. and Arntzen, C.J. 1981. Identification of a 32–34-kilodalton polypeptide as a herbicide receptor protein in photosystem II. Biochim. et Biophys. Acta 635: 236–248.

  54. 54

    Pfister, K., Steinback, K.E., Gardner, G. and Arntzen, C.J. 1981. Photoaffinity labeling of an herbicide receptor protein in chloroplast membranes. Proc. Natl. Acad. Sci. USA 78: 981–985.

  55. 55

    Gardner, G. 1981. Azidoatrazine: Photoaffinity label for the site of triazine herbicide action in chloroplasts. Science 211: 937–940.

  56. 56

    Mattoo, A.K., Pick, U., Hoffman-Falk, H. and Edelman, M. 1981. The rapidly metabolized 32,000-dalton polypeptide of the chloroplast is the “proteinaceous shield” regulating photosystem II electron transport and mediating diuron herbicide sensitivity. Proc. Natl. Acad. Sci. USA 78: 1572–1576.

  57. 57

    Steinback, K.E., McIntosh, L., Bogorad, L. and Arntzen, C.J. 1981. Identification of the triazine receptor protein as a chloroplast gene product. Proc. Natl. Acad. Sci. USA 78: 7463–7467.

  58. 58

    Caplan, A., Herrera-Estrella, L., Inze, D., Van Haute, E., Van Montagu, M., Schell, J. and Zambryski, P. 1983. Introduction of genetic material into plant cells. Science 222: 815–821.

  59. 59

    Rao, J.K.M., Hargrave, P.A. and Argos, P. 1983. Will the seven-helix bundle be a common structure for integral membrane proteins? FEBS Lett. 156: 165–169.

Download references

Author information

Rights and permissions

Reprints and Permissions

About this article

Further reading