Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Biological Limitations on the Length of Highly Repetitive DNA Sequences that May be Stably Maintained within Plasmid Replicons in Escherichia coli

Abstract

By following a logical set of selection rules, a dodecadeoxyribonucleotide with potentially unique coding properties was designed and synthesized. This dodecamer is palindromic throughout 2/3 of its length, it self–anneals to generate multimers with 4bp single–stranded extensions, and, upon treatment with DNA ligase, it can be covalently joined to any double–stranded DNA molecule previously digested with EcoRI. The presence within our polymerized dodecamer of cleavage sites for endonucleases HaeIII and Bal I facilitated the monitoring of polymerization, ligation, and cloning. The polymerized dodecamer was positioned downstream from the lac UV5 promoter in a frameshift plasmid, pPCφ1, chosen to ensure that a particular translational reading frame would be utilized.

Cloned, synthetic palindromic DNA was stable in vivo, but only when its size did not exceed 120 bp. The apparent lack of viability of cells harboring plasmids with inserts longer than 120 bp appears to be solely attributable to the palindromic character of the DNA. An alternative approach that has shown promise as a way of increasing the cellular content of a highly palindromic sequence is to interrupt the sequences with nonpalindromic DNA. This strategy was used to construct stable plasmids with 30–90 copies of a palindromic sequence that would not otherwise persist in E. coli.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Goeddel, D.V., Kleid, D.G., Bolivar, F., Heynecker, H.L., Yansura, D.G., Crea, R., Hirose, T., Kraszewski, A., Itakura, K., and Riggs, A.D. 1979. Expression in Escherichia coli of chemically synthesized genes for human insulin. Proc. Nat. Acad. Sci. (USA) 76: 106–110.

    Article  CAS  Google Scholar 

  2. Martial, J.A., Hallewell, R.A., Baxter, J.D., and Goodman, H.M. 1979. Human growth hormone: complementary DNA cloning and expression in bacteria. Science 205: 602–607.

    Article  CAS  Google Scholar 

  3. Goeddel, D.V., Heynecker, H.L., Hozumi, T., Arentzen, R., Itakura, K., Yansura, D.G., Ross, M.J., Miozzari, G., Crea, R., and Seeburg, P.H. 1979. Direct expression in Escherichia coli of a DNA sequence coding for human growth hormone. Nature 281: 544–548.

    Article  CAS  Google Scholar 

  4. Fraser, T.H. and Bruce, B.J. 1978. Chicken ovalbumin is synthesized and secreted by Escherichia coli. Proc. Nat. Acad. Sci. (USA) 75: 5936–5940.

    Article  CAS  Google Scholar 

  5. Mercereau-Puijalon, O., Royal, A., Cami, B., Garapin, A., Krust, A., Gannon, F., and Kourilsky, P. 1978. Synthesis of an ovalbumin-like protein by Escherichia coli K12 harbouring a recombinant plasmid. Nature 275: 505–510.

    Article  CAS  Google Scholar 

  6. Itakura, K., Hirose, T., Crea, R., Riggs, A.D., Heynecker, H.L., Bolivar, F., and Boyer, H.W. 1977. Expression in Escherichia coli of a chemically synthesized gene for the hormone somatostatin. Science 198: 1056–1063.

    Article  CAS  Google Scholar 

  7. Emtage, J.S., Tacon, W., Catlin, G.H., Jenkins, B., Porter, A.G., and Carey, N.H. 1980. Influenza antigenic determinants are expressed from haemagglutinin gene cloned in Escherichia coli. Nature 283: 171–174.

    Article  CAS  Google Scholar 

  8. Doel, M.T., Eaton, M., Cook, E.A., Lewis, H., Patel, T., and Carey, N.H. 1980. Expression in E. coli of synthetic repeating polymeric gene coding for poly (L-aspartyl-L-phenylalanine). Nucleic Acid Res. 8: 4575–4592.

    Article  CAS  Google Scholar 

  9. Kangas, T.T., Cooney, C.L., and Gomez, R.F. 1982. Expression of a proline-enriched protein in Escherichia coli. Appl. Environ. Microbiol. 43: 629–635.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Brutlag, D., Fry, K., Nelson, T., and Hung, P. 1977. Synthesis of hybrid bacterial plasmids containing highly repeated satellite DNA. Cell 10: 509–519.

    Article  CAS  Google Scholar 

  11. Sadler, J.L., Tecklenburg, M., and Betz, J.L. 1980. Plasmids containing many tandem copies of a synthetic lactose operator. Gene 8: 279–300.

    Article  CAS  Google Scholar 

  12. Collins, J. 1980. Instability of palindromic DNA in Escherichia coli. Symposia on Quantitative Biology 45: 409–416.

    Article  Google Scholar 

  13. Collins, J., Volckaert, G., and Nevers, P. 1982. Precise and nearly-precise excision of the symmetrical inverted repeats of Tn 5: Common features of recA-independent deletion events in Escherichia coli. Gene 19: 139–146.

    Article  CAS  Google Scholar 

  14. Lilley, D.M.J. 1981. In vivo consequences of plasmid topology. Nature 292: 380–382.

    Article  CAS  Google Scholar 

  15. Hagan, C.E., and Warren, G.J. 1982. Lethality of palindromic DNA and its use in the selection of recombinant plasmids. Gene 19: 147–151.

    Article  CAS  Google Scholar 

  16. Itakura, J., Buhl, C.P., Katagiri, N., Michniewicz, J.J., Wightmin, R.H., and Narang, S.A. 1973. Can. J. Chem. 51: 3649–3651.

    Article  CAS  Google Scholar 

  17. Donelson, J.E., Burrell, B.G., Weith, H.L., Küssel, H., and Schott, H. 1975. Eur. J. Biochem. 58: 303–315.

    Article  Google Scholar 

  18. Charnay, P., Perricaudet, M., Galibert, F., and Tiollais, P. 1978. Bacteriophage Lambda and plasmid vectors, allowing fusion of cloned genes in each of the three translation phases. Nucleic Acid Res. 5: 4479–4494.

    Article  CAS  Google Scholar 

  19. Maxam, A.M. and Gilbert, W. 1977. A new method of sequencing DNA. Proc. Nat. Acad. Sci. (USA) 74: 560–564.

    Article  CAS  Google Scholar 

  20. Hallewell, R.A. and Sherratt, D.J. 1976. Isolation and characterization of ColE2 plasmid mutants unable to kill colicin-sensitive cells. Mol. Gen. Genet. 146: 239–245.

    Article  CAS  Google Scholar 

  21. Yang, H.L., Ivashkiv, L., Chen, H.Z., Zubay, G., and Cashel, M. 1980. Cell-free coupled transcription-translation system for investigation of linear DNA segments. Proc. Nat. Acad. Sci. (USA) 77: 7029–7033.

    Article  CAS  Google Scholar 

  22. Kacinski, B.M., Sancar, A., and Rupp, W.D. 1981. A general approach for purifying proteins encoded by cloned genes without using a functional assay: Isolation of the uvrA gene product from radiolabeled maxicells. Nucleic Acid Res. 9: 4495–4508.

    Article  CAS  Google Scholar 

  23. Ish-Horowicz, D. and Burke, J.F. 1981. Rapid and efficient cosmid cloning. Nucleic Acid Res. 9: 2989–2998.

    Article  CAS  Google Scholar 

  24. Marians, K.J., Wu, R., Stawinski, J., Hozumi, T., and Narang, S.A. 1976. Cloned synthetic lac operator DNA is biologically active. Nature 263: 744–748.

    Article  CAS  Google Scholar 

  25. Sadler, J.R., Betz, J.L., and Tecklenburg, M. 1978. Cloning of chemically synthesized lactose operators II. EcoRI-linked operators. Gene 3: 211–232.

    Article  CAS  Google Scholar 

  26. Szostak, J.W. and Blackburn, E.H. 1982. Cloning yeast telomeres on linear plasmid vectors. Cell 29: 245–255.

    Article  CAS  Google Scholar 

  27. Struhl, K., Cameron, J.R., and Davis, R.W. 1976. Functional genetic expression of eucaryotic DNA in Escherichia coli. Proc. Nat. Acad. Sci. (USA) 73: 1471–1475.

    Article  CAS  Google Scholar 

  28. Boyer, H.W. and Roulland-Dussoix, D. 1969. A complementation analysis of the restriction and modification of DNA in Escherichia coli. J. Mol. Biol. 41: 459–472.

    Article  CAS  Google Scholar 

  29. Williams, B.G. and Blattner, F.R. 1979. Construction and characterization of the hybrid bacteriophage lambda Charon vectors for DNA cloning. J. Virol. 29: 555–575.

    CAS  PubMed  PubMed Central  Google Scholar 

  30. Bolivar, F., Rodriguez, R., Greene, P.J., Betlach, M., Heynecker, H.L., Boyer, H.W., Crosa, J., and Falkows, S. 1977. Contruction and characterization of new cloning vehicles, a multipurpose cloning system. Gene 2: 95–113.

    Article  CAS  Google Scholar 

  31. Hartley, J.L. and Gregori, T.J. 1981. Cloning multiple copies of a DNA segment. Gene 13: 347–353.

    Article  CAS  Google Scholar 

  32. Gough, G.R., Singleton, C.K., Weith, H.L., and Gilham, P. 1979. Protected deoxyribonucleoside-3′ aryl phosphodiesters as key intermediates in polynucleotide synthesis. Construction of an icosanucleotide analogous to the sequence at the ends of Rous Sarcoma Virus 35S RNA. Nucleic Acid Res. 6: 1557–1570.

    Article  CAS  Google Scholar 

  33. Goodman, H.M. and MacDonald, R.J. 1980. Cloning of hormone genes from a mixture of cDNA molecules. Methods Enzymol. 68: 75–91.

    Article  Google Scholar 

  34. Blattner, F.R., Blechl, A.E., Denniston-Thompson, K., Faber, H.E., Richards, J.E., Slightom, J.L., Tucker, P.W., and Smithies, O. 1978. Cloning human fetal δ globin and mouse α-type globin DNA: Preparation and screening of shotgun collections. Science 202: 1279–1284.

    Article  CAS  Google Scholar 

  35. Clewell, D.B. and Helinski, D.R. 1970. Properties of a supercoiled deoxyribonucleic acid-protein relaxation complex and strand specificity of the relaxation event. Biochem. 9: 4428–4440.

    Article  CAS  Google Scholar 

  36. Cohen, S.N., Chang, A.C.Y., and Hsu, Z. 1972. Nonchromosomal antibiotic resistance in bacteria: Genetic transformation of Escherichia coli by R-factor DNA. Proc. Nat. Acad, Sci. (USA) 69: 2110–2114.

    Article  CAS  Google Scholar 

  37. Miller, J.H. 1978. Experiments in Molecular Genetics, Cold Spring Harbor Laboratory, Cold Spring Harbor, NY, 1972, pp. 433.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gupta, S., Weith, H. & Somerville, R. Biological Limitations on the Length of Highly Repetitive DNA Sequences that May be Stably Maintained within Plasmid Replicons in Escherichia coli. Nat Biotechnol 1, 602–609 (1983). https://doi.org/10.1038/nbt0983-602

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0983-602

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing