What are decision trees?

Decision trees have been applied to problems such as assigning protein function and predicting splice sites. How do these classifiers work, what types of problems can they solve and what are their advantages over alternatives?

Access options

Rent or Buy article

Get time limited or full article access on ReadCube.

from$8.99

All prices are NET prices.

Figure 1: A hypothetical example of how a decision tree might predict protein-protein interactions.

References

  1. 1

    Quinlan, J.R. C4.5: Programs for Machine Learning. (Morgan Kaufmann Publishers, San Mateo, CA, USA, 1993).

    Google Scholar 

  2. 2

    Breiman, L., Friedman, J., Olshen, R. & Stone, C. Classification and Regression Trees (Wadsworth International Group, Belmont, CA, USA, 1984).

    Google Scholar 

  3. 3

    Caruana, R. & Niculescu-Mizil, A. An empirical comparison of supervised learning algorithms. in Machine Learning, Proceedings of the Twenty-Third International Conference (eds. Cohen, W.W. & Moore, A.) 161–168 (ACM, New York, 2003).

    Google Scholar 

  4. 4

    Zadrozny, B. & Elkan, C. Obtaining calibrated probability estimates from decision trees and naive Bayesian classifiers. in Proceedings of the 18th International Conference on Machine Learning, (eds. Brodley, C.E. & Danyluk, A.P.) 609–616 (Morgan Kaufmann, San Francisco, 2001).

    Google Scholar 

  5. 5

    Murthy, S.K., Kasif, S. & Salzberg, S. A system for induction of oblique decision trees. J. Artif. Intell. Res. 2, 1–32 (1994).

    Article  Google Scholar 

  6. 6

    MacKay, D.J.C. Information Theory, Inference and Learning Algorithms (Cambridge University Press, Cambridge, UK, 2003).

    Google Scholar 

  7. 7

    Quinlan, J.R. & Rivest, R.L. Inferring decision trees using the Minimum Description Length Principle. Inf. Comput. 80, 227–248 (1989).

    Article  Google Scholar 

  8. 8

    Breiman, L. Random forests. Mach. Learn. 45, 5–32 (2001).

    Article  Google Scholar 

  9. 9

    Heath, D., Kasif, S. & Salzberg, S. Committees of decision trees. in Cognitive Technology: In Search of a Human Interface (eds. Gorayska, B. & Mey, J.) 305–317 (Elsevier Science, Amsterdam, The Netherlands, 1996).

    Google Scholar 

  10. 10

    Schapire, R.E. The boosting approach to machine learning: an overview. in Nonlinear Estimation and Classification (eds. Denison, D.D., Hansen, M.H., Holmes, C.C., Mallick, B. & Yu, B.) 141–171 (Springer, New York, 2003).

    Google Scholar 

  11. 11

    Freund, Y. & Mason, L. The alternating decision tree learning algorithm. in Proceedings of the 16th International Conference on Machine Learning, (eds. Bratko, I. & Džeroski, S.) 124–133 (Morgan Kaufmann, San Francisco, 1999).

    Google Scholar 

  12. 12

    Wong, S.L. et al. Combining biological networks to predict genetic interactions. Proc. Natl. Acad. Sci. USA 101, 15682–15687 (2004).

    CAS  Article  Google Scholar 

  13. 13

    Allen, J.E., Majoros, W.H., Pertea, M. & Salzberg, S.L. JIGSAW, GeneZilla, and GlimmerHMM: puzzling out the features of human genes in the ENCODE regions. Genome Biol. 7 Suppl, S9 (2006).

  14. 14

    Middendorf, M., Kundaje, A., Wiggins, C., Freund, Y. & Leslie, C. Predicting genetic regulatory response using classification. Bioinformatics 20, i232–i240 (2004).

    CAS  Article  Google Scholar 

  15. 15

    Chen, X.-W. & Liu, M. Prediction of protein-protein interactions using random decision forest framework. Bioinformatics 21, 4394–4400 (2005).

    CAS  Article  Google Scholar 

Download references

Author information

Affiliations

Authors

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Kingsford, C., Salzberg, S. What are decision trees?. Nat Biotechnol 26, 1011–1013 (2008). https://doi.org/10.1038/nbt0908-1011

Download citation

Further reading

Search

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing