Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo

Abstract

The promise of gene therapy for health care will not be realized until gene delivery systems are capable of achieving efficient, cell-specific gene delivery in vivo. Here we describe an adenoviral system for achieving cell-specific transgene expression in pulmonary endothelium. The combination of transductional targeting to a pulmonary endothelial marker (angiotensin-converting enzyme, ACE) and an endothelial-specific promoter (for vascular endothelial growth factor receptor type 1, flt-1) resulted in a synergistic, 300,000-fold improvement in the selectivity of transgene expression for lung versus the usual site of vector sequestration, the liver. This combined approach should be useful for the design of other gene delivery systems.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo.
Figure 2: Targeting fidelity is maintained upon left ventricular injection.
Figure 3: Combined targeting shows improved selectivity at high vector dose.
Figure 4: Combined targeting achieves pulmonary-specific transgene expression.
Figure 5: Pulmonary-specific transgene expression is localized to vascular endothelium.

Similar content being viewed by others

References

  1. Lane, K.B. et al. Heterozygous germline mutations in BMPR2, encoding a TGF-beta receptor, cause familial primary pulmonary hypertension. The International PPH Consortium. Nat. Genet. 26, 81–84 (2000).

    Article  CAS  PubMed  Google Scholar 

  2. Deng, Z. et al. Familial primary pulmonary hypertension (gene PPH1) is caused by mutations in the bone morphogenetic protein receptor-II gene. Am. J. Hum. Genet. 67, 737–744 (2000).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Moraes, D. & Loscalzo, J. Pulmonary hypertension: newer concepts in diagnosis and management. Clin. Cardiol. 20, 676–682 (1997).

    Article  CAS  PubMed  Google Scholar 

  4. Russell, W.C. Update on adenovirus and its vectors. J. Gen. Virol. 81, 2573–2604 (2000).

    Article  CAS  PubMed  Google Scholar 

  5. Rodman, D.M. et al. In vivo gene delivery to the pulmonary circulation in rats: transgene distribution and vascular inflammatory response. Am. J. Respir. Cell. Mol. Biol. 16, 640–649 (1997).

    Article  CAS  PubMed  Google Scholar 

  6. Huard, J. et al. The route of administration is a major determinant of the transduction efficiency of rat tissues by adenoviral recombinants. Gene Ther. 2, 107–115 (1995).

    CAS  PubMed  Google Scholar 

  7. Bergelson, J.M. et al. Isolation of a common receptor for Coxsackie B viruses and adenoviruses 2 and 5. Science 275, 1320–1323 (1997).

    Article  CAS  PubMed  Google Scholar 

  8. Tomko, R.P., Xu, R. & Philipson, L. HCAR and MCAR: the human and mouse cellular receptors for subgroup C adenoviruses and group B coxsackieviruses. Proc. Natl. Acad. Sci. USA 94, 3352–3356 (1997).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Yee, D. et al. Adenovirus-mediated gene transfer of herpes simplex virus thymidine kinase in an ascites model of human breast cancer. Hum. Gene Ther. 7, 1251–1257 (1996).

    Article  CAS  PubMed  Google Scholar 

  10. Wickham, T.J. Targeting adenovirus. Gene Ther. 7, 110–114 (2000).

    Article  CAS  PubMed  Google Scholar 

  11. Douglas, J.T. et al. Targeted gene delivery by tropism-modified adenoviral vectors. Nat. Biotechnol. 14, 1574–1578 (1996).

    Article  CAS  PubMed  Google Scholar 

  12. Krasnykh, V.N., Douglas, J.T. & van Beusechem, V.W. Genetic targeting of adenoviral vectors. Mol. Ther. 1, 391–405 (2000).

    Article  CAS  PubMed  Google Scholar 

  13. Reynolds, P.N. et al. A targetable injectable adenoviral vector for selective gene delivery to pulmonary endothelium in vivo. Mol. Ther. 2, 562–578 (2000).

    Article  CAS  PubMed  Google Scholar 

  14. Franke, F.E. et al. CD143 Workshop: angiotensin-I-converting enzyme (CD143) on endothelial cells in normal and in pathological conditions. In Leukocyte typing VI. (eds Kishimoto, T. et al.) 749–751 (Garland Publishing Inc., New York, NY; 1997).

    Google Scholar 

  15. Danilov, S.M. et al. Pulmonary uptake and tissue selectivity of antibodies to surface endothelial antigens: key determinants of vascular immunotargeting. Am. J. Physiol. (Lung Cell. Mol. Physiol.) 280, L1335–L1347 (2001).

    Article  CAS  Google Scholar 

  16. Leissner, P. et al. Influence of adenoviral fiber mutations on viral encapsidation, infectivity and in vivo tropism. Gene Ther. 8, 49–57 (2001).

    Article  CAS  PubMed  Google Scholar 

  17. Alemany, R. & Curiel, D.T. CAR binding ablation does not change biodistribution or toxicity of adenoviral vectors. Gene Ther. in press (2001).

    Google Scholar 

  18. Wickham, T.J., Mathias, P., Cheresh, D.A. & Nemerow, G.R. Integrins alpha v beta 3 and alpha v beta 5 promote adenovirus internalization but not virus attachment. Cell 73, 309–319 (1993).

    Article  CAS  PubMed  Google Scholar 

  19. Nettelbeck, D.M., Jerome, V. & Muller, R. Gene therapy: designer promoters for tumour targeting. Trends Genet. 16, 174–181 (2000).

    Article  CAS  PubMed  Google Scholar 

  20. Adachi, Y. et al. Midkine promoter-based adenoviral vector gene delivery for pediatric solid tumors. Cancer Res. 60, 4305–4310 (2000).

    CAS  PubMed  Google Scholar 

  21. Koeneman, K.S. et al. Osteocalcin-directed gene therapy for prostate-cancer bone metastasis. World J. Urol. 18, 102–110 (2000).

    Article  CAS  PubMed  Google Scholar 

  22. Yamamoto, M., Alemany, R., Adachi, Y., Grizzle, W.E. & Curiel, D.T. Characterization of the cyclooxygenase-2 promoter in an adenoviral vector and its application for the mitigation of toxicity in suicide gene therapy of gastrointestinal cancers. Mol. Ther. 3, 385–394. (2001).

    Article  CAS  PubMed  Google Scholar 

  23. Nicklin, S.A. et al. Analysis of cell-specific promoters for viral gene therapy targeted at the vascular endothelium. Hypertension 38, 65–70 (2001).

    Article  CAS  PubMed  Google Scholar 

  24. Bristol, J.A., Shirley, P., Idamakanti, N., Kaleko, M. & Connelly, S. In vivo dose threshold effect of adenovirus-mediated factor VIII gene therapy in hemophiliac mice. Mol. Ther. 2, 223–232 (2000).

    Article  CAS  PubMed  Google Scholar 

  25. Tao, N. et al. Sequestration of adenoviral vector by Kupffer cells leads to a nonlinear dose response of transduction in liver. Mol. Ther. 3, 28–35 (2001).

    Article  CAS  PubMed  Google Scholar 

  26. Reynolds, P.N. et al. Targeting adenoviral infection with basic fibroblast growth factor enhances gene delivery to vascular endothelial and smooth muscle cells. Tumor Targeting 3, 156–168 (1998).

    CAS  Google Scholar 

  27. Wickham, T.J. et al. Targeted adenovirus gene transfer to endothelial and smooth muscle cells by using bispecific antibodies. J. Virol. 70, 6831–6838 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Harari, O.A. et al. Targeting an adenoviral gene vector to cytokine-activated vascular endothelium via E-selectin. Gene Ther. 6, 801–807 (1999).

    Article  CAS  PubMed  Google Scholar 

  29. Nicklin, S.A., White, S.J., Watkins, S.J., Hawkins, R.E. & Baker, A.H. Selective targeting of gene transfer to vascular endothelial cells by use of peptides isolated by phage display. Circulation 102, 231–237 (2000).

    Article  CAS  PubMed  Google Scholar 

  30. Danilov, S.M. et al. Lung is the target organ for a monoclonal antibody to angiotensin- converting enzyme. Lab. Invest. 64, 118–124 (1991).

    CAS  PubMed  Google Scholar 

  31. Danilov, S. et al. Interaction of mAb to angiotensin-converting enzyme (ACE) with antigen in vitro and in vivo: antibody targeting to the lung induces ACE antigenic modulation. Int. Immunol. 6, 1153–1160 (1994).

    Article  CAS  PubMed  Google Scholar 

  32. Ring, C.J., Harris, J.D., Hurst, H.C. & Lemoine, N.R. Suicide gene expression induced in tumour cells transduced with recombinant adenoviral, retroviral and plasmid vectors containing the ERBB2 promoter. Gene Ther. 3, 1094–1103 (1996).

    CAS  PubMed  Google Scholar 

  33. Schuster, D.P., Crouch, E.C., Parks, W.C., Johnson, T. & Botney, M.D. Angiotensin converting enzyme expression in primary pulmonary hypertension. Am. J. Respir. Crit. Care Med. 154, 1087–1091 (1996).

    Article  CAS  PubMed  Google Scholar 

  34. Hirose, S., Hosoda, Y., Furuya, S., Otsuki, T. & Ikeda, E. Expression of vascular endothelial growth factor and its receptors correlates closely with formation of the plexiform lesion in human pulmonary hypertension. Pathol. Int. 50, 472–479 (2000).

    Article  CAS  PubMed  Google Scholar 

  35. Orte, C., Polak, J.M., Haworth, S.G., Yacoub, M.H. & Morrell, N.W. Expression of pulmonary vascular angiotensin-converting enzyme in primary and secondary plexiform pulmonary hypertension. J. Pathol. 192, 379–384. (2000).

    Article  CAS  PubMed  Google Scholar 

  36. He, T.C. et al. A simplified system for generating recombinant adenoviruses. Proc. Natl. Acad. Sci. USA 95, 2509–2514 (1998).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Morishita, K., Johnson, D.E. & Williams, L.T. A novel promoter for vascular endothelial growth factor receptor (flt-1) that confers endothelial-specific gene expression. J. Biol. Chem. 270, 27948–27953 (1995).

    Article  CAS  PubMed  Google Scholar 

  38. Graham, F. & Prevec, L. Manipulation of adenovirus vectors. In Methods in molecular biology 7—gene transfer and expression techniques. (eds Murray, E.J. & Walker, J.M.) 109–129 (Humana Press, Clifton, NJ; 1991).

    Google Scholar 

  39. Raben, D. et al. Enhancement of radiolabeled antibody binding and tumor localization through adenoviral transduction of the human carcinoembryonic antigen gene. Gene Ther. 3, 567–580 (1996).

    CAS  PubMed  Google Scholar 

  40. Conry, R.M. et al. Immune response to a carcinoembryonic antigen polynucleotide vaccine. Cancer Res. 54, 1164–1168 (1994).

    CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This research was supported by grants from the American Heart Association, NIH-NIDDK P30 DK54781, and the Avon Products Foundation to P.N.R.; NIH-NCI RO1 CA74242 to D.T.C. and British Heart Foundation (PG97/018 and PG99/097) grants to A.H.B. We would also like to thank Masato Yamamoto for providing the AdCMVLuc virus, and Long Le, Kathee Mercer, and the UAB Image Analysis Core for technical assistance.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul N. Reynolds.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reynolds, P., Nicklin, S., Kaliberova, L. et al. Combined transductional and transcriptional targeting improves the specificity of transgene expression in vivo. Nat Biotechnol 19, 838–842 (2001). https://doi.org/10.1038/nbt0901-838

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0901-838

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing