Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Tumor targeting with a selective gelatinase inhibitor

Abstract

Several lines of evidence suggest that tumor growth, angiogenesis, and metastasis are dependent on matrix metalloproteinase (MMP) activity. However, the lack of inhibitors specific for the type IV collagenase/gelatinase family of MMPs has thus far prevented the selective targeting of MMP-2 (gelatinase A) and MMP-9 (gelatinase B) for therapeutic intervention in cancer. Here, we describe the isolation of specific gelatinase inhibitors from phage display peptide libraries. We show that cyclic peptides containing the sequence HWGF are potent and selective inhibitors of MMP-2 and MMP-9 but not of several other MMP family members. Our prototype synthetic peptide, CTTHWGFTLC, inhibits the migration of human endothelial cells and tumor cells. Moreover, it prevents tumor growth and invasion in animal models and improves survival of mice bearing human tumors. Finally, we show that CTTHWGFTLC–displaying phage specifically target angiogenic blood vessels in vivo. Selective gelatinase inhibitors may prove useful in tumor targeting and anticancer therapies.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Figure 1: Inhibition of [125I]-gelatin degradation by peptides derived from phage display libraries.
Figure 2: CTTHWGFTLC and CRRHWGFEFC peptides inhibit MMP-2 but not MT1-MMP.
Figure 3: Inhibition of cell migration by the gelatinase inhibitor CTTHWGFTLC.
Figure 4: CTTHWGFTLC inhibits tumor growth in mouse models.
Figure 5: Targeting of CTTHWGFTLC phage into KS1767-derived Kaposi's sarcomas.

Similar content being viewed by others

References

  1. Birkendal-Hansen, H. Proteolytic remodeling of extracellular matrix. Curr. Opin. Cell Biol. 7, 728–735 ( 1995).

    Article  Google Scholar 

  2. Stetler-Stevenson, W.G., Aznavoorian, S. & Liotta, L.A. Tumor cell interactions with the extracellular matrix during invasion and metastasis. Annu. Rev. Cell Biol. 9, 541–573 (1993).

    Article  CAS  Google Scholar 

  3. Murray, G.I., Duncan, M.E., O'Neil, P., Melvin, W.T. & Fothergill, J.E. Matrix metalloproteinase-1 is associated with poor prognosis in colorectal cancer. Nat. Med. 2, 461–462 (1996).

    Article  CAS  Google Scholar 

  4. Murphy, G. & Crabbe, T. Gelatinases A and B. Methods Enzymol. 248, 470–484 (1995).

    Article  CAS  Google Scholar 

  5. Liotta, L.A. et al. Metastatic potential correlates with enzyme derived from a metastatic murine tumor. Nature 284, 67– 68 (1980).

    Article  CAS  Google Scholar 

  6. Karakiulakis, G. et al. Increased type IV collagen-degrading activity in metastases originating from primary tumors of the human colon. Invasion & Metastasis 17, 158–168 1997.

    CAS  Google Scholar 

  7. Pyke, C., Ralfkiaer, E., Tryggvason, K. & Dano, K. Messenger RNA for two type IV collagenases is located in stromal cells in human colon cancer. Am. J. Pathol. 142, 359–365 (1993).

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Sugiura, Y., Shimada, H., Seeger, R.C., Laung, W.E. & DeClerck, Y. A Matrix metalloproteinases-2 and -9 are expressed in human neuroblastoma: contribution of stromal cells to their production and correlation with metastasis. Cancer Res. 58, 2209–2216 (1998).

    CAS  PubMed  Google Scholar 

  9. Wilhelm, S.M. et al. SV40-transformed human lung fibroblasts secrete a 92 kDa type IV collagenase which is identical to that secreted by normal human macrophages. J. Biol. Chem. 264, 17213– 17221 (1989).

    CAS  PubMed  Google Scholar 

  10. Heppner, K.J., Matrisian, L.M., Jensen, R.A. & Rodgers, W.H. Expression of most matrix metalloproteinase family members in breast cancer represents a tumor-induced response. Am. J. Pathol. 149, 273–282 (1996).

    CAS  PubMed  PubMed Central  Google Scholar 

  11. Brooks, P.C. et al. Localization of matrix metalloproteinase MMP-2 to the surface of invasive cells by interaction with integrin αvβ3. Cell 85, 683–693 ( 1996).

    Article  CAS  Google Scholar 

  12. Haas, T.L., Davis, S.J. & Madri, J.A. Three-dimensional type I collagen lattices induce coordinate expression of matrix metalloproteinases MT1-MMP and MMP-2 in microvascular endothelial cells. J. Biol. Chem. 273, 3604 –3610 (1998).

    Article  CAS  Google Scholar 

  13. Vu, T.H. et al. MMP-9/gelatinase B is a key regulator of growth plate angiogenesis and apoptosis of hypertrophic chondrocytes. Cell 93 , 411–422 (1998).

    Article  CAS  Google Scholar 

  14. Hanahan, D. & Folkman, J. Patterns and emerging mechanisms of the angiogenic switch during tumorigenesis. Cell 86, 353–364 (1996).

    Article  CAS  Google Scholar 

  15. Davies, B., Brown, P.D., East, N., Crimmin, M.J. & Balkwill, F.R. A synthetic matrix metalloproteinase inhibitor decreases tumor burden and prolongs survival of mice bearing human ovarian carcinoma xenografts. Cancer Res. 53, 2087– 2091 (1993).

    CAS  PubMed  Google Scholar 

  16. Taraboletti, G. et al. Inhibition of angiogenesis and murine hemangioma growth by batimastat, a synthetic inhibitor of matrix metalloproteinases. J. Natl. Cancer Inst. 87, 293–298 (1995).

    Article  CAS  Google Scholar 

  17. Volpert, O.V. et al. Captopril inhibits angiogenesis and slows the growth of experimental tumors in rats. J. Clin. Invest. 98, 671 –679 (1996).

    Article  CAS  Google Scholar 

  18. Anderson, I.C., Shipp, M.A., Docherty, A.J.P. & Teicher, B.A. Combination therapy including a gelatinase inhibitor and a cytotoxic agent reduced local invasion and metastasis of murine Lewis lung carcinoma. Cancer Res. 56, 715–710 (1996).

    CAS  PubMed  Google Scholar 

  19. Ecclels, S.A. et al. Control of lymphatic and hematogenous metastasis of a rat mammary carcinoma by the matrix metalloproteinase inhibitor batimastat (BB-94). Cancer Res. 56, 2815–2822 (1996).

    Google Scholar 

  20. Talbot, D.C. & Brown, P.D. Experimental and clinical studies on the use of matrix metalloproteinase inhibitors for the treatment of cancer. Eur. J. Cancer 32, 2528– 2533 (1996).

    Article  Google Scholar 

  21. Beckett, R.P., Davidson, A.H., Drummond, A.H., Huxley, P. & Whittaker, M. Recent advances in matrix metalloproteinase inhibitor research. Drug Design Today 1, 16–26 (1996).

    Article  CAS  Google Scholar 

  22. Santos, O., McDermott, C.D., Daniels, R.G. & Appelt, K. Rodent pharmacokinetic and anti-tumor efficacy studies with a series of synthetic inhibitors of matrix metalloproteinases. Clin. Exp. Metastasis 15, 499–508 ( 1997).

    Article  CAS  Google Scholar 

  23. Pulli, T., Koivunen, E. & Hyypia, T. Cell-surface interactions of echovirus 22. J. Biol. Chem. 272, 21176–21180 (1997).

    Article  CAS  Google Scholar 

  24. Goldberg, G.I., Strongin, A., Collier, I.E., Genrich, L.T. & Marmer, B.L. Interaction of 92-kDa type IV collagenase with the tissue inhibitor of metalloproteinases prevents dimerization, complex formation with interstitial collagenase, and activation of the proenzyme with stromelysin. J. Biol. Chem. 267, 4583– 4591 (1992).

    CAS  PubMed  Google Scholar 

  25. Brooks, P.C., Silletti, S., von Schalscha, T.L., Friedlander, M. & Cheresh, D.A. Disruption of angiogenesis by PEX, a noncatalytic metalloproteinase fragment with integrin binding activity. Cell 92, 391–400 (1998).

    Article  CAS  Google Scholar 

  26. Pasqualini, R., Koivunen, E. & Ruoslahti, E. αv integrins as receptors for tumor targeting by circulating ligands. Nat. Biotechnol. 245, 346–369 (1997).

    Google Scholar 

  27. Arap, W., Pasqualini, R. & Ruoslahti, E. Cancer treatment by targeted drug delivery to tumor vasculature in a mouse model. Science 279, 377–380 (1998).

    Article  CAS  Google Scholar 

  28. Wojtowicz-Praga, S. et al. Phase I trial of Marimastat, a novel matrix metalloproteinase inhibitor, administered orally to patients with advanced lung cancer. J. Clin. Oncol. 16, 2150–2156 (1998).

    Article  CAS  Google Scholar 

  29. Goetzl, E.J., Banda, M.J. & Leppert, D. Matrix metalloproteinases in immunity. J. Immunol. 156, 1–4 ( 1996).

    CAS  PubMed  Google Scholar 

  30. Sorsa, T. et al. Activation of type IV procollagenases by human tumor-associated trypsin-2. J. Biol. Chem. 272, 21067– 21074 (1997).

    Article  CAS  Google Scholar 

  31. Nagase, H., Enghild, J.J., Suzuki, K. & Salvesen, G. Stepwise activation mechanisms of the precursor of matrix metalloproteinase 3 (stromelysin) by proteinases and (4-aminophenyl) mercuric acetate. Biochemistry 29, 5783–5790 (1990).

    Article  CAS  Google Scholar 

  32. Stocker, W. & Bode, W. Structural features of a superfamily of zinc-endopeptidases: the metzincins. Curr. Opin. Struct. Biol. 5, 383–390 ( 1995).

    Article  CAS  Google Scholar 

  33. Ferry, G., Boutin, J.A., Atassi, G., Fauchere, J.-L. & Tucker, G.C. Selection of histidine-containing inhibitor of gelatinases through deconvolution of combinatorial tetrapeptide libraries. Molecular Diversity 2, 135–146 (1996).

    Article  Google Scholar 

  34. Matthews, D.J. & Wells, J.A. Substrate phage: selection of protease substrates by monovalent display. Science 260, 1113–1117 ( 1993).

    Article  CAS  Google Scholar 

  35. Ke, S.H. et al. Distinguishing the specificities of closely related proteases. Role of P3 in substrate and inhibitor discrimination between tissue type plasminogen activator and urokinase. J. Biol. Chem. 272, 16603–16609 (1997).

    Article  CAS  Google Scholar 

  36. Smith M.M., Shi, L. & Navre, M. Rapid identification of highly active and selective substrates for stromelysin and matrilysin using bacteriophage peptide display libraries. J. Biol. Chem. 270, 6440–6449 (1995).

    Article  CAS  Google Scholar 

  37. Krook, M., Lindbladh, C., Eriksen, J.A. & Mosbach, K. Selection of a cyclic nonapeptide inhibitor to α-chymotrypsin using a phage display peptide library. Molecular Diversity 3, 149–159 (1998).

    Article  CAS  Google Scholar 

  38. Rui, F., Jie, Q., Zhi-bin, L., Hui, Z., Wei, L. & Jiacong, S. Selection of trypsin inhibitors in a phage peptide library. Biochem. Biophys. Res. Commun. 220, 53–56 ( 1996).

    Article  Google Scholar 

  39. Seftor, R.E.B. et al. Chemically modified tetracyclines inhibit human melanoma cell invasion and metastasis. Clin. Exp. Metastasis 16, 217–225 (1998).

    Article  CAS  Google Scholar 

  40. Kim, J., Yu, W., Kovalski, K. & Ossowski, L. Requirement for specific proteases in cancer cell intravasation as revealed by a novel semiquantitative PCR-based assay. Cell 94, 353– 362 (1998).

    Article  CAS  Google Scholar 

  41. Itoh, T. et al. Reduced angiogenesis and tumor progression in gelatinase A-deficient mice. Cancer Res. 58, 1048– 1051 (1998).

    CAS  Google Scholar 

  42. Arap, W., Pasqualini., R. & Ruoslahti, E. Chemotherapy targeted to tumor vasculature. Current Opinion in Oncology 10, 560– 565 (1998).

    Article  CAS  Google Scholar 

  43. Rajotte, D. & Ruoslahti, E. Membrane dipeptidase is the receptor for a lung-targeting peptide identified by in vivo phage display. J. Biol. Chem. 274, 11593–11598 (1999).

    Article  CAS  Google Scholar 

  44. Pasqualini, R., Arap, W., Rajotte, D. & Ruoslahti, E. in Phage display of proteins and peptides (eds Barbas, C., Burton, D., Silverman, G., & Scott, J.) (Cold Spring Harbor Laboratory Press, New York, 1999). In press.

  45. Sorsa, T. et al. Effects of tetracyclines on neutrophil, gingival, and salivary collagenases. A functional and Western blot assessment with special reference to their cellular sources in periodontal diseases. Ann. N.Y. Acad. Sci. 732, 112–131 ( 1994).

    Article  CAS  Google Scholar 

  46. Koivunen, E. et al. Human colon carcinoma, fibrosarcoma and leukemia cell lines produce tumor-associated trypsinogen. Int. J. Cancer 47, 592–596 (1991).

    Article  CAS  Google Scholar 

  47. Domingo, G.J., Leatherbarrow, R.J., Freeman, N., Patel, S. & Weir, M. Synthesis of a mixture of cyclic peptides based on the Bowman-Birk reactive site loop to screen for serine protease inhibitors. International Journal of Peptide and Protein Research 46, 79–87 ( 1995).

    Article  CAS  Google Scholar 

  48. Koivunen, E., Wang, B. & Ruoslahti, E. . Phage libraries displaying cyclic peptides with different ring sizes: ligand specificities of of the RGD-directed integrins. Bio/Technology 13, 265–270 (1995).

    CAS  PubMed  Google Scholar 

  49. Smith, G.P. & Scott, J.K. Libraries of peptides and proteins displayed in filamentous phage. Methods Enzymol. 217 , 228–257 (1993).

    Article  CAS  Google Scholar 

  50. Teronen, O. et al. Human neutrophil collagenase MMP-8 in peri-implant sulcus fluid and its inhibition by clodronate. J. Dent. Res. 76, 1529–1537 (1997).

    Article  CAS  Google Scholar 

  51. Edgell, C.-J.S., McDonald, C.C. & Graham, J.B. Permanent cell line expressing human factor VIII-related antigen established by hybridization. Proc. Natl. Acad. Sci. USA 80, 3734–3737 ( 1983).

    Article  CAS  Google Scholar 

  52. Herndier, B.G. et al. Characterization of a human Kaposi's sarcoma cell line that induces angiogenic tumors in animals. AIDS 8, 575–581 (1996).

    Article  Google Scholar 

Download references

Acknowledgements

We thank Drs. Guy Salvesen and Jeffrey W. Smith for critical reading of the manuscript, and Dr. Daniel Rajotte and Jason A. Hoffman for helpful suggestions. This work was supported by grant CA74238 (E.R.) and Cancer Center Support grant CA30199 from the National Cancer Institute, grants DAMD17-98-1-8041 (R.P.) and DAMD17-98-1-8164 (W.A.) from the Department of Defense, and grants from the Academy of Finland, Finnish Dental Society, Finnish Cancer Society, and Sigrid Juselius Foundation (E.K. and C.G.G.). W.A. is the recipient of a CaP CURE award.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Erkki Koivunen or Renata Pasqualini.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Koivunen, E., Arap, W., Valtanen, H. et al. Tumor targeting with a selective gelatinase inhibitor. Nat Biotechnol 17, 768–774 (1999). https://doi.org/10.1038/11703

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/11703

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing