Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry

Abstract

To measure the average length of telomere repeats at chromosome ends in individual cells we developed a flow cytometry method using fluorescence in situ hybridization (flow FISH) with labeled peptide nucleic acid (PNA) probes. Results of flow FISH measurements correlated with results of conventional telomere length measurements by Southern blot analysis (R=0.9). Consistent differences in telomere length in CD8+ T-cell subsets were identified. Naive and memory CD4+ T lymphocytes in normal adults differed by around 2.5 kb in telomere length, in agreement with known replicative shortening of telomeres in lymphocytes in vivo. T-cell clones grown in vitro showed stabilization of telomere length after an initial decline and rare clones capable of growing beyond 100 population doublings showed variable telomere length. These results show that flow FISH can be used to measure specific nucleotide repeat sequences in single cells and indicate that the very large replicative potential of lymphocytes is only indirectly related to telomere length.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Blackburn, E.H. and Greider, C.W. (eds.). 1995. Telomeres. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.

    Google Scholar 

  2. Harley, C.B., Futcher, A.B. and Greider, C.W. 1990. Telomeres shorten during ageing of human fibroblasts. Nature 345: 458–460.

    Article  CAS  PubMed  Google Scholar 

  3. Allsopp, R.C., Vaziri, H., Patterson, C., Goldstein, S., Younglai, E.V., Futcher, A.B. et al. 1992. Telomere length predicts replicative capacity of human fibroblasts. Proc. Natl. Acad. Sci. USA 89: 10114–10118.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hastie, N.D., Dempster, M., Dunlop, M.G., Thompson, A.M., Green, D.K. and Allshire, R.C. 1990. Telomere reduction in human colorectal carcinoma and with ageing. Nature 346: 866–868.

    Article  CAS  PubMed  Google Scholar 

  5. Vaziri, H., Schachter, F., Uchida, I., Wei, L., Zhu, X., Effros, R. et al. 1993. Loss of telomeric DNA during aging of normal and trisomy 21 human lymphocytes. Am. J. Hum. Genet. 52: 661–667.

    CAS  PubMed  PubMed Central  Google Scholar 

  6. Greider, C.W. and Blackburn, E.H. 1985. Identification of a specific telomere terminal transferase activity in Tetrhymena extracts. Cell 43: 405–413.

    Article  CAS  PubMed  Google Scholar 

  7. Lingner, J., Hughes, T.R., Shevchenko, A., Mann, M., Lundblad, V. and Cech, T.R. 1997. Reverse transcriptase motifs in the catalytic subunit of telomerase. Science 276: 561–567.

    Article  CAS  PubMed  Google Scholar 

  8. Blasco, M.A., Lee, H.-W., Hande, M.P., Samper, E., Lansdorp, P.M., DePinho, R.A. et al. 1997. Telomere shortening and tumor formation by mouse cells lacking telomerase RNA. Cell 91: 25–34.

    Article  CAS  PubMed  Google Scholar 

  9. Autexier, C. and Greider, C.W. 1996. Telomerase and cancer: revisiting the telomere hypothesis. Trends. Biochem. Sci. 21: 387–391.

    Article  CAS  PubMed  Google Scholar 

  10. Shay, J.W. and Wright, W.E. 1996. Telomerase activity in human cancer. Curr. Opin. Oncol. 8: 66–71.

    Article  CAS  PubMed  Google Scholar 

  11. Bodnar, A.G., Ouellette, M., Frolkis, M., Holt, S.E., Chiu, C.-P., Morin, G.B. et al. 1998. Extension of life-span by introduction of telomerase into normal human cells. Science 279: 349–353.

    Article  CAS  PubMed  Google Scholar 

  12. Vaziri, H. and Benchimol, S. 1998. Reconstitution of telomerase activity in normal human cells leads to elongation of telomeres and extended replicative life span. Curr. Blol. 8: 279–282.

    Article  CAS  Google Scholar 

  13. Martens, U.M., Zijlmans, J.M., Poon, S.S.S., Dragowska, W., Yui, J., Chavez, E.A. et al. 1998. Short telomeres on human chromosome 17p. Nat. Genet. 18: 76–80.

    Article  CAS  PubMed  Google Scholar 

  14. Slagboom, R.E., Droog, S. and Boomsma, D.I. 1994. Genetic determination of telomere size in humans: a twin study of three age groups. Am. J. Hum. Genet. 55: 876–882.

    CAS  PubMed  PubMed Central  Google Scholar 

  15. Weng, N.-R., Levine, B.L., June, C.H. and Hodes, R.J. 1995. Human naive and memory T lymphocytes differ in telomeric length and replictive potential. Proc. Natl. Acad. Sci. USA 92: 11091–11094.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Vaziri, H., Dragowska, W., Allsopp, R.C., Thomas, T.E., Harley, C.B. and Lansdorp, P.M. 1994. Evidence for a mitotic clock in human hematopoietic stem cells: loss of telomeric DNA with age. Proc. Natl. Acad. Sci. USA 91: 9857–9860.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Notaro, R., Cimmino, A., Tabarini, D., Rotoli, B. and Luzzatto, L. 1997. In vivo telomere dynamics of human hematopoietic stem cells. Proc. Natl. Acad. Sci. USA 94: 13782–13785.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Wynn, R.F., Cross, M.A., Hatton, C., Will, A.M., Lashford, L.S., Dexter, T.M. et al. 1998. Accelerated telomere shortening in young recipients of allogeneic bone-marrow transplants. Lancet 351: 178–181.

    Article  CAS  PubMed  Google Scholar 

  19. Wolthers, K.C., Wisman, B.G., Otto, S.A. de Roda Husman, A.M., Schaft, N., de Wolf, F. et al. 1996. T cell telomere length in HIV-1 infection: no evidence for increased CD4+ T cell turnover. Science 274: 1543–1547.

    Article  CAS  PubMed  Google Scholar 

  20. Mohri, H., Bonhoeffer, S., Monard, S., Perelson, A.S. and Ho, D.D. 1998. Rapid turnover of T lymphocytes in SIV-infected rhesus macaques. Science 279: 1223–1227.

    Article  CAS  PubMed  Google Scholar 

  21. Effros, R.B. and Pawelec, G. 1997. Replicative senescence of T cells: does the Hayflick Limit lead to immune exhaustion. Immunol. Today 18: 450–454.

    Article  CAS  PubMed  Google Scholar 

  22. Weng, N.-R., Palmer, L.D., Levine, B.L., Lane, H.C., June, C.H. and Hodes, R.J. 1997. Tales of tails: regulation of telomere length and telomerase activity during lymphocyte development, differentiation, activation, and aging. Immunol. Rev. 160: 43–54.

    Article  CAS  PubMed  Google Scholar 

  23. Lansdorp, P.M., Verwoerd, N.P., van de Rijke, F.M., Dragowska, V., Little, M.-T., Dirks, R.W. et al. 1996. Heterogeneity in telomere length of human chromosomes. Hum. Mol. Genet. 5: 685–691.

    Article  CAS  PubMed  Google Scholar 

  24. Smith, S.H., Brown, M.H., Rowe, D., Callard, R.E. and Beverley, R.C. 1986. Functional subsets of human helper-inducer cells defined by a new monoclonal antibody, UCHL-1. Immunology 58: 63–70.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Hamann, D., Baars, P.A., Rep, M.H.G., Hooibrink, B., Kerkhof-Garde, S.R., Klein, M.R. et al. 1997. Phenotypic and functional separation of memory and effector human CD8+ T cells. J. Exp. Med. 186: 1407–1418.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Tough, D.F. and Sprent, J. 1994. Turnover of naive- and memory-phenotype T cells. J. Exp. Med. 179: 1127–1135.

    Article  CAS  PubMed  Google Scholar 

  27. Palmer, L.D., Weng, N.-R., Levine, B.L., June, C.H., Lane, H.C. and Hodes, R.J. 1997. Telomere length, telomerase activity, and replicative potential in HIV infection: analysis of CD4+ and CD8+ T cells from HIV-discordant monozygotic twins. J. Exp. Med. 185: 1381–1386.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Trask, B., Van Den Engh, G., Landegent, J. Jansen in de Wai, N., and van der Ploeg, M. 1985. Detection of DNA sequences in nuclei in suspension by in situ hybridization and dual beam flow cytometry. Science 230: 1401–1403.

    Article  CAS  PubMed  Google Scholar 

  29. Trask, B., Van Den Engh, G., Pinkel, D., Mullikin, J., Waldman, P., van Dekken, H et al. 1988. Fluorescence in situ hybridization to interphase cell nuclei in suspension allows flow cytometric analysis of chromosome content and microscopic analysis of nuclear organization. Hum. Genet. 78: 251–259.

    Article  CAS  PubMed  Google Scholar 

  30. van Dekken, H., Arkesteijn, G.J.A., Visser, J.W.M. and Bauman, J.G.J. 1990.Flow cytometric quantification of human chromosome specific repetitive DNA sequences by single and bicoior fluorescent in situ hybridization to lymphocyte interphase nuclei. Cytometry 11: 153–164.

    Article  CAS  PubMed  Google Scholar 

  31. Arkesteijn, G.J.A., Erpelinck, S.L.A., Martens, A.C.M. and Hagenbeek, A. 1995. Chromosome specific DNA hybridization in suspension for flow cytometric detection of chimerism in bone marrow transplantation and leukemia. Cytometry 19: 353–360.

    Article  CAS  PubMed  Google Scholar 

  32. Yu, G. and Blackburn, E.H. 1991. Developmentally programmed healing of chromosomes by telomerase in Tetrahymena. Cell 67: 823–832.

    Article  CAS  PubMed  Google Scholar 

  33. Cao, J., Vescio, R.A., Hong, C.H., Kim, A., Lichtenstein, A.K. and Berenson, J.R. 1995. Identification of malignant cells in multiple myeloma bone marrow with immunoglobulin VH gene probes by fluorescent in situ hybridization and flow cytometry. J. Clin. Invest. 95: 964–972.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhu, X., Kumar, R., Mandal, M., Sharma, N., Sharma, H.W., Dhingra, U. et al. 1996. Cell cycle-dependent modulation of telomerase activity in tumor cells. Proc. Natl. Acad. Sci. USA 93: 6091–6095.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Nielsen, P.E., Egholm, M., Berg, R.H. and Buchardt, O. 1991. Sequence-selective recognition of DNA by strand displacement with a thymine-substituted polyamide. Science 254: 1497–1500.

    Article  CAS  PubMed  Google Scholar 

  36. Egholm, M., Buchardt, O., Christensen, L., Behrens, C., Freier, S., Driver, D.A. et al. 1993. PNA hybridizes to complementary oligonucleotides obeying the Watson-Crick hydrogen bonding rules. Nature 365: 566–568.

    Article  CAS  PubMed  Google Scholar 

  37. ZijImans, J.M., Martens, U.M., Poon, S.S.S., Raap, A.K., Tanke, H.J., Ward, R.K. et al. 1997. Telomeres in the mouse have large inter-chromosomal variations in the number of T2AG3 repeats. Proc. Natl. Acad. Sci. USA 94: 7423–7428.

    Article  Google Scholar 

  38. Roosnek, E. and Lanzavecchia, A. 1989. Triggering T cells by otherwise inert hybrid anti-CD3/antitumor antibodies requires encounter with the specific target cell. J. Exp. Med. 170: 297–302.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rufer, N., Dragowska, W., Thornbury, G. et al. Telomere length dynamics in human lymphocyte subpopulations measured by flow cytometry. Nat Biotechnol 16, 743–747 (1998). https://doi.org/10.1038/nbt0898-743

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0898-743

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing