Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Article
  • Published:

In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice

Abstract

Nitric oxide (NO), a simple diatomic free radical, is known to play a critical physiological role in diverse organisms. An iron complex, with N-(dithiocarboxy)sarcosine (Fe-DTCS), has a high affinity for endogenous NO and can trap, stabilize, and accumulate it. The stable NO adduct thus formed is detectable at room temperature with electron paramagnetic resonance (EPR) spectrometry. We report in vivo EPR imaging of endogenous NO, trapped by an Fe-DTCS complex, in the abdomen of a live mouse. To our knowledge, this is the first report on EPR imaging of endogenous free radicals produced in vivo. This EPR imaging method will be useful for the noninvasive investigation of the spatial distribution of NO in pathologic organs or tissues.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Moncada, S., Palmer, R.M.J., and Higgs, E.A. 1991. Nitric oxide: physiology, patho-physiology, and pharmacology. Pharmacol. Rev. 43: 109–142.

    CAS  PubMed  Google Scholar 

  2. Feldman, P.L., Griffith, O.W., and Stuehr, D.J. 1993. The surprising life of nitric oxide. Chem. Eng. News 71: 26–38.

    CAS  Google Scholar 

  3. Chen, Y. and Rosazza, J.P.N. 1994. A bacterial nitric oxide synthase from a Nocardia species. Biochem. Biophys. Res. Commun. 203: 1251–1258.

    Article  CAS  PubMed  Google Scholar 

  4. Noguchi, T., Honda, J., Nagamune, T., Sasabe, H., Inoue, Y., et al. 1995. Photosensitive nitrite hydratase intrinsically possesses nitric oxide bound to the non-heme iron center evidence by Fourier transform infrared spectroscopy. FEBS Lett 358: 9–12.

    Article  CAS  PubMed  Google Scholar 

  5. Palmer, R.M.J., Ferrige, A.G., and Moncada, S. 1987. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor. Nature 327: 524–526.

    Article  CAS  PubMed  Google Scholar 

  6. Archer, S. 1993. Measurement of nitric oxide in biological models. FASEB J. 7: 349–360.

    Article  CAS  PubMed  Google Scholar 

  7. Berliner, L.J. and Fujii, H. 1992. Some applications of ESR to in vivo animal studies and EPR imaging, pp. 307–319 in Biological magnetic resonance, vol 11, Berliner, L.J. and Reuben, J. (eds.). Plenum Press, New York.

    Google Scholar 

  8. Colacicchi, S., Alecci, M., Gualtieri, G., Quaresima, V., Ursini, C.L., et al. 1993. New experimental procedures for in vivo L-band frequency EPR spectroscopy/ imaging. J. Chem. Soc. Perkin Trans. 2077–2082.

  9. Ishida, S., Matsumoto, S., Yokoyama, H., Mori, N., Kumashiro, H., et al. 1992. An ESR-CT imaging of the head of a living rat receiving an administration of a nitroxide radical. Magn. Reson. Imag. 10: 109–114.

    Article  CAS  Google Scholar 

  10. Janzen, E.G. 1971. Spin trapping. Acc. Chem. Res. 4: 31–40.

    Article  CAS  Google Scholar 

  11. Buettner, G.B. 1987. Spin trapping: ESR parameters of spin adducts. Free Rad. Biol. Med. 3: 259–303.

    Article  CAS  PubMed  Google Scholar 

  12. Mordvintcev, P., Mülsch, A., Busse, R., and Vanin, A. 1991. On-line detection of nitric oxide formation in liquid aqueous phase by electron paramagnetic resonance spectroscopy. Anal. Biochem. 199: 142–146.

    Article  CAS  PubMed  Google Scholar 

  13. Kalyanaraman, J.B. and Hyde, J.S. 1993. Trapping of nitric oxide by nitronyl nitroxide: an electron spin resonance investigation. Biochem. Biophys. Res. Commun. 192: 926–934.

    Article  PubMed  Google Scholar 

  14. Korth, H-G., Sustmann, R., Lommes, P., Paul, T., Ernst, A., et al. 1994. Nitric oxide cheletropic traps (NOCTs) with improved thermal stability and water solubility. J. Am. Chem. Soc. 116: 2767–2777.

    Article  CAS  Google Scholar 

  15. Lai, C-S. and Komarov, A.M. 1994. Spin trapping of nitric oxide produced in vivo in septic-shock mice. FEBS Lett. 345: 120–124.

    Article  CAS  PubMed  Google Scholar 

  16. Yoshimura, T., Fujii, S., Yokoyama, H., and Kamada, H. 1995. In vivo electron paramagnetic resonance imaging of NO-bound iron complex in a rat head. Chem. Lett. 309–310.

    Article  Google Scholar 

  17. Sakai, Y. 1980. hotometric determination of copper with N-(dithiocarboxy)sarcosine after preconcentration with amberiite XAD-2 resin. Talanta 27: 1073–1076.

    Article  CAS  PubMed  Google Scholar 

  18. Stuehr, D.J. and Marietta, M.A. 1985. Mammalian nitrate biosynthesis: mouse macrophages produce nitrite and nitrate in response to Escherichia coli lipopolysac-charide. Proc. Natl Acad. Sci. USA 82: 7738–7742.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Westenberger, U., Thanner, S., Ruf, H.H., Gersonde, K., Sutter, G., et al. 1990. Formation of free radicals and nitric oxide derivative of hemoglobin in rats during shock syndrome. Free Rad. Res. Comms. 11: 167–178.

    Article  CAS  Google Scholar 

  20. Paratt, J.R. 1973. Myocardial and circulatory effects of E coli endotoxin; modification of responses to catecholamines. Br. J. Pharmacol. 47: 12–25.

    Article  Google Scholar 

  21. Suffredini, A.F., Fromm, R.E., Parker, M.M., Brenner, M., Kovacs, J.A., et al. 1989. The cardiovascular response of normal humans to the administration of endotoxin. N. Engl. J. Med. 321: 280–287.

    Article  CAS  PubMed  Google Scholar 

  22. Kubrina, L.N., Mikoyan, V.D., Mordvintcev, P.I., and Vanin, A.F. 1993. Iron potentiates bacterial lipopolysaccharide-induced nitric oxide formation in animal organ. Biochim. Biophys. Acta 1176: 140–144.

    Google Scholar 

  23. Shinobu, L.A., Jones, S.G., and Jones, M.M. 1984. Sodium N-methyl-D-glucamine dithiocarbamate and cadmium intoxication. Acta Pharmacol. Toxicol. 54: 189–194.

    Article  CAS  Google Scholar 

  24. Oikawa, K., Ogata, T., Togashi, H., Lin, Y., Sato, T., et al. 1995. Rapid field scan L-band electron spin resonance computed tomography system using an air-core electromagnet. Anal. Sci. 11: 885–889.

    Article  CAS  Google Scholar 

  25. Yokoyama, H., Ogata, T., Tsuchihashi, N., Hiramatsu, M., and Mori, N. 1996. A spattotem-poral study on the distribution of intraperitoneally injected nitroxide radical in the rat head using an in vivo ESR imaging system. Magnetic Resonance Imaging 14:In press.

    Article  CAS  PubMed  Google Scholar 

  26. Lauterbur, P.C. 1973. Image formation by induced local interactions: examples employing nuclear magnetic resonance. Nature 242: 190–191.

    Article  CAS  Google Scholar 

  27. Jansson, P.A. 1984. Deconvolution with application in spectroscopy. Academic Press, New York.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yoshimura, T., Yokoyama, H., Fujii, S. et al. In vivo EPR detection and imaging of endogenous nitric oxide in lipopolysaccharide-treated mice. Nat Biotechnol 14, 992–994 (1996). https://doi.org/10.1038/nbt0896-992

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0896-992

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing