Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Research Paper
  • Published:

Mutations in Human Interferon Gamma Affecting Inclusion Body Formation Identified by a General Immunochemical Screen

Abstract

High level expression of the gene for human interferon-gamma (HuIFN-γ) in E. coli JM101 cultured at 37° C results in the distribution of over 90 percent of the total accumulated gene product into inclusion bodies (IBs). We have identified mutations throughout the molecule that alter the distribution between the soluble and inclusion body fractions without greatly affecting total expression level. Some mutants retain high biological activity but are localized almost entirely in the soluble fraction. Mutations affecting IB distribution as well as stability to intracellular proteolysis were detected by immunochemical screens and verified by gel assays. Immunochemical screens such as those employed here may allow identification of folding and stability mutants in heterologously expressed proteins when there is no other basis for selection or screening. These results also suggest that one solution to production problems arising from IB formation may be to identify mutations in the target protein that favor expression of soluble protein while retaining biological activity.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Similar content being viewed by others

References

  1. Prouty, W.F. and Goldberg, A.L. 1972. Fate of abnormal proteins in E. coli: Accumulation in intracellular granules before catabolism. Nature 240: 147–150.

    Article  CAS  Google Scholar 

  2. Prouty, W.F., Karnovsky, M.J. and Goldeberg, A.L. 1975. Degradation of abnormal proteins in Escherichia coli: Formation of protein inclusions in cells exposed to amino acid analogs. J. Biol. Chem. 250: 1112–1122.

    CAS  PubMed  Google Scholar 

  3. Williams, D.C., Van Frank, R.M., Muth, W.L. and Burnett, J.P. 1982. Cytoplasmic inclusion bodies in Escherichia coli producing bio-synthetic human insulin proteins. Science 215: 687–689.

    Article  CAS  PubMed  Google Scholar 

  4. Wetzel, R. and Goeddel, D.V. 1983. Synthesis of polypeptides by recombinant DNA methods p. 1–64. In: The Peptides: Analysis, Synthesis, Biology. Meienhofer, J. and Gross, E. (Eds.). Academic Press, New York.

    Google Scholar 

  5. Gribskov, M. and Burgess, R.R. 1983. Overexpression and purification of the sigma subunit of E. coli RNA polymerase. Gene 26: 109–118.

    Article  CAS  PubMed  Google Scholar 

  6. Marston, F.A.O. and Hartley, D.L. 1990. Solubilization of protein aggregates. Methods in Enzymol. 182: 264–276.

    Article  CAS  Google Scholar 

  7. Wetzel, R. 1991. Enhanced folding and stabilization of proteins by suppression of aggregation in vitro and in vivo. In: Protein Engineering—A Practical Approach. Rees, A. R., Sternberg, M. J. E. and Wetzel, R. (Eds.). IRL Press at Oxford University Press, Oxford.

    Google Scholar 

  8. Wetzel, R. 1991. Protein aggregation in vivo: Bacterial inclusion bodies and mammalian amyloid. In: Stability of Protein Pharmaceuticals: In Vivo Pathways of Degradation and Strategies for Protein Stabilization. Ahern, T. J. and Manning, M. C. (Eds.). Plenum Press, New York.

    Google Scholar 

  9. Haase-Pettingell, C.A. and King, J. 1988. Formation of aggregates from a thermolabile in vivo folding intermediate in P22 tailspike maturation; A model for inclusion body formation. J. Biol. Chem. 263: 4977–4983.

    CAS  PubMed  Google Scholar 

  10. Krueger, J.K., Stock, A.M., Schutt, C.E. and Stock, J.B. 1990. Inclusion bodies from proteins produced at high levels in Escherichia coli p. 136–142. In: Protein Folding: Deciphering the Second Half of the Genetic Code, Gierasch, L. M. and King, J. (Eds). American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  11. Chrunyk, B.A., Evans, J., Lilquist, J., Young, P.R. and Wetzel, R. 1991. Mutations in human interleukin 1-β alter the expression of the protein in inclusion bodies. J. Cell. Biochem. 15G: 190.

    Google Scholar 

  12. Fane, B., Villafane, R., Mitraki, A. and King, J. 1991. Identification of global suppressors for temperature sensitive folding mutants of the P22 tailspike protein. J. Biol. Chem. 261: In press.

    Google Scholar 

  13. Fane, B. and King, J. 1991. Intragenic suppressors of folding defects in the P22 tailspike protein. Genetics 127: 263–277.

    CAS  PubMed  PubMed Central  Google Scholar 

  14. King, J., Fane, B., Haase-Pettingell, C., Mitraki, A. and Villafane, R. 1990. Genetic analysis of polypeptide chain folding and misfolding in vivo, p. 59–78. In: Protein Design and the Development of New Therapeutics and Vaccines. Hook, J. B. and Poste, G. (Eds.). Plenum Press, New York.

    Chapter  Google Scholar 

  15. Wetzel, R., Perry, L.J., Veilleux, C. and Chang, G. 1990. Mutational analysis of the carboxyl terminus of human interferon-γ. Protein Engineering 3: 611–623.

    Article  CAS  PubMed  Google Scholar 

  16. Wetzel, R., Perry, L.J., Mulkerrin, M.G., Veilleux, C. and Chang, G. 1990. Genetic, physical and chemical studies on the role of the carboxyl-terminal region of interferon-gamma, p 219–227. In: Protein Engineering '89: The Proceedings of the Second International Conference on Protein Engineering. Ikehara, M., Oshima, T. and Titani, K. (Eds.). Japan Scientific Societies Press, Tokyo.

    Google Scholar 

  17. Arakawa, T., Alton, N.K. and Hsu, Y.R. 1985, Preparation and characterization of recombinant DNA-derived human interferon-γ. J. Biol. Chem. 260: 14435–14439.

    CAS  PubMed  Google Scholar 

  18. Taylor, G., Hoare, M., Gray, D.R. and Marston, F.A.O. 1986. Size and density of protein inclusion bodies. Bio/Technology 4: 553–557.

    CAS  Google Scholar 

  19. Hsu, Y.R., Ferguson, B., Narachi, M., Richards, R.M., Stabinsky, T., Alton, N.K., Stebbing, N. and Arakawa, T. 1986. Structure and activity of recombinant human interferon-γ analogs. J. Interferon Res. 6: 663–670.

    Article  CAS  PubMed  Google Scholar 

  20. Honda, S., Asano, T., Kajio, T., Nakagawa, S., Ikeyama, S., Ichimori, Y., Sugino, H., Nara, K., Kakinuma, A. and Kung, H.-F. 1987. Differential purification by immunoaffinity chromatography of two carboxy-terminal portion-deleted derivatives of recombinant human interferon-γ from Escherichia coli. J. Interferon Res. 7: 145–154.

    Article  CAS  PubMed  Google Scholar 

  21. Doebeli, H., Gentz, R., Jucker, W., Garotta, G., Hartmann, D.W. and Hochuli, E. 1988. Role of the carboxy-terminal sequence on the biological activity of human immune interferon (IFN-γ). J. Biotech. 7: 199–216.

    Article  CAS  Google Scholar 

  22. Lee, S.G., Ricca, R.A., Crumley, G., Lloyd, R.S. and Drohan, W. . 1988. Modulation of expression of the human gamma interferon gene in E. coli by site-directed mutagenesis. Biochem. Biophys. Res. Comm. 151: 598–607.

    Article  CAS  PubMed  Google Scholar 

  23. Schein, C.H. and Noteborn, M.H.M. 1988. Formation of soluble recombinant proteins in Escherichia coli is favored by lower growth temperature. Bio/Technology 6: 291–294.

    CAS  Google Scholar 

  24. Schein, C.H. 1989. Production of soluble recombinant proteins in bacteria. Bio/Technology 7: 1141–1149.

    CAS  Google Scholar 

  25. King, J., Fane, B., Haase-Pettingell, C., Mitraki, A., Villafane, R. and Yu, M.-H. 1990. Identification of amino acid sequences influencing intracellular folding pathways using temperature-sensitive folding mutations, p. 225–240. In: Protein Folding: Deciphering the Second Half of the Genetic Code, Gierasch, L. M. and King, J. (Eds.). American Association for the Advancement of Science, Washington, D.C.

    Google Scholar 

  26. Ealick, S.E., Cook, W.J., Vijay-Kumar, S., Carson, M., Nagabhushan, T.L., Trotta, P.P. and Bugg, C.E. 1991. Three-dimensional structure of recombinant human interferon-γ. Science 252: 698–702.

    Article  CAS  PubMed  Google Scholar 

  27. Mulkerrin, M.G. and Wetzel, R. 1989. pH dependence of the reversible and irreversible thermal denaturation of γ interferons. Biochem. 28: 6556–6561.

    Article  CAS  Google Scholar 

  28. Wilkinson, D.L. and Harrison, R.G. 1991. Predicting the solubility of recombinant proteins in Escherichia coli. Bio/Technology. 9: 443–448.

    CAS  Google Scholar 

  29. Rinderknecht, E. and Burton, L.E. 1985. Biochemical characterization of natural and recombinant IFN-gamma, p. 397–402. In: The Biology of the Interferon System, 1984. Kirschner, H. and Schellekens, H. (Eds.). Elsevier, Amsterdam.

    Google Scholar 

  30. Fane, B. and King, J. 1987. Identification of sites influencing the folding and subunit assembly of the P22 tailspike polypeptide chain using nonsense mutations. Genetics 117: 157–171.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Hogrefe, H.H., McPhie, P., Bekisz, J.B., Enterline, J.C., Dyer, D., Webb, D.S.A., Gerrard, T.L. and Zoon, K.C. 1989. Amino terminus is essential to the structural integrity of recombinant human interferon-γ. J. Biol. Chem. 264: 12179–12186.

    CAS  PubMed  Google Scholar 

  32. Zavodny, P., Petro, M.E., Chiang, T.R., Narula, S.K. and Leibowitz, P.J. 1988. Alterations of the amino terminus of murine interferon-γ. expression and biological activity. J. Interferon Res. 8: 483–494.

    Article  CAS  PubMed  Google Scholar 

  33. Goldenberg, D. 1988. Genetic studies of protein stability and mechanisms of folding. Ann. Rev. Biophys. Biophys. Chem. 17: 481–507.

    Article  CAS  Google Scholar 

  34. Coplen, L.J., Frieden, R.W. and Goldenberg, D.P. 1990. A genetic screen to identify variants of bovine pancreatic trypsin inhibitor with altered folding energetics. Proteins: Structure, Function, and Genetics 7: 16–31.

    Article  CAS  Google Scholar 

  35. Wetzel, R., Perry, L.J., Mulkerrin, M.G. and Randall, M. 1990. Unfolding and inactivation: Genetic and chemical approaches to the stabilization of T4 lysozyme and interferon-gamma against irreversible thermal denaturation p. 79–115. In: Protein Design and the Development of New Therapeutics and Vaccines; Proceedings of the Sixth Annual Smith, Kline and French Research Symposium. Poste, G. and Hook, J. B. (Eds.). Plenum Press, New York.

    Google Scholar 

  36. Perry, L.J. and Wetzel, R. 1986. Unpaired cysteine-54 interferes with the ability of an engineered disulfide to stabilize T4 lysozyme. Biochem. 25: 733–739.

    Article  CAS  Google Scholar 

  37. Matteucci, M.D. and Heyneker, H.L. 1983. Targeted random mutagenesis: the use of ambiguously synthesized oligonucleotides to mutagenize sequences immediately 5′ of an ATG codon. Nucleic Acids Res. 11: 3113–3122.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Hart, R.A. Rinas U. and Bailey, J.E. 1990. Protein composition of Vitreoscilla hemoglobin inclusion bodies produced in Escherichia coli. J. Biol. Chem. 265: 12728–12733.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wetzel, R., Perry, L. & Veilleux, C. Mutations in Human Interferon Gamma Affecting Inclusion Body Formation Identified by a General Immunochemical Screen. Nat Biotechnol 9, 731–737 (1991). https://doi.org/10.1038/nbt0891-731

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1038/nbt0891-731

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing